

Integration of IoT Platform and JADE
Agent Infrastructure

Project Acronym IoT4Industry

Document-Id D.1

File name

Version FINAL document

Date Start: 01 October 2014

End: 31 November 2014

Author(s) Felix Strohmeier

QA Process Dr. Violeta Damjanovic-Behrendt

1

Table of Content

IoT4Industry in a Nutshell
IoT4Industry Task 1 Description
Glossary
1. Problem Statement
2. Technical Experience from the Integration of the IoT platform and the Agent Framework

2.1. Thingsquare / Contiki IoT Platform and its Evaluation Kit
2.2. JADE Agent Environment

2.2.1. JADE Deployment in IoT4Industry
2.2.2. Running the “Contract-Net” Interaction Protocol with JADE

3. Next Steps
3.1. Alternative IoT-Platforms

3.1.1 Arduino-based Sensor Platform
3.1.2 RIOT-OS

3.2. Alternative Agent Frameworks
3.2.1 AKKA
3.2.2 JIAC

References

2

IoT4Industry in a Nutshell

IoT4Industry is an exploratory project funded by the Austrian Research Promotion Agency, for

the period October 2014 – September 2015. It stands for “Secure, Privacy-preserving Agents for

the Industrial Internet”. The core research areas of IoT4Industry relate to security, privacy and

IPR/data protection requirements, translated into game-theoretic agent behavior, which is

simulated in a demo factory floor environment, supporting a supply chain negotiation. A demo

factory floor is implemented within our IoT-lab, which is located at Salzburg Research.

While it is still not clear which protocols and technologies will become mainstream for the

Industrial Internet, it has become clear that security and privacy will feature strongly in any risk

assessment concerning the adoption of practices using the Industrial Internet. Thus, in

IoT4Industry, we focus on the use of policy-enacting, multi-agent systems that securely manage

machines and manufacturing cells, and we build a feasibility demonstrator based on open

source tools and firmware. In addition, IoT4Industry helps us to prepare for internationally

recognized contributions to science and technology in the field of Industrial Internet, notably in

Horizon 2020.

3

IoT4Industry Task 1 Description
(from the IoT4Industry project proposal)

D1: Integration of IoT Platform and JADE Agent Infrastructure

Goals:

1. Thingsquare/Contiki IoT platform and evaluation Kit is operational

2. JADE/WADE agent environment is operational

3. On-line presence of the integrated platforms

4. Simple communication between the platforms can be demonstrated

Description of the content

First integration of the Thingsquare/Contiki platform with JADE agents. We can receive

and further communicate sensor data from the IoT platform to one agent and beyond.

Method

Hardware and software integration ranging from Thingsquare sensors (evaluation kit) to

messaging between Contiki platform and JADE agent platform.

Milestones, results and deliverables

Working software is online, short technical report on the project Wiki.

4

Glossary

Constrained Application Protocol (CoAP) is a software protocol which allows simple

electronics devices to communicate interactively over the Internet. It is particularly targeted for

small low power sensors, switches, valves and similar components that need to be controlled or

supervised remotely, through standard Internet networks (c.f.

http://en.wikipedia.org/wiki/Constrained_Application_Protocol).

General Purpose Input/ Output (GPIO) is a generic pin on an integrated circuit whose

behavior, including whether it is an input or output pin, can be controlled by the user at run time

(c.f. http://en.wikipedia.org/wiki/General-purpose_input/output).

Lightweight M2M (LWM2M) is a standard for Device Management, Network Management and

Application Data for the Internet of Things. This is CoAP and DTLS based standard which

provides a complete system interface solution for M2M devices and services (c.f.

http://www.slideshare.net/zdshelby/oma-lightweightm2-mtutorial).

5

1. Problem Statement
IoT4Industry investigates Industrial Internet (Industry 4.0) applications and their requirements

related to privacy, security and data protection. In D.1 “Integration of IoT Platform and JADE

Agent Infrastructure”, we summarize technical experience gained during setting up our local IoT

laboratory, that is equipped with the Thingsquare/Contiki, Arduino and Raspberry Pi-based IoT

platforms. In addition, we installed JADE agent framework in order to explore its usage in an IoT

setting.

Document organization. After a brief description of the problem statement in IoT4Industry, in

Section 2, we present our technical experience on integrating the agent framework and the IoT

platform. In Section 3, we discuss our next steps targeting several alternative IoT platforms and

agent frameworks supporting IoT.

2. Technical Experience from the Integration of the IoT platform
and the Agent Framework
We identified the Thingsquare/Contiki as an IoT platform with the potential to implement the

IoT4Industry project requirements, and to demonstrate the role of technologies such as agent

systems and their Game Theoretic (GT) foundation to IoT-based supply chain negotiation. In

parallel, we explored security and privacy aspects of IoT applications, and integrated

Thingsquare/Contiki IoT platform and JADE agents. Our technical experience from this task is

presented below.

2.1. Thingsquare / Contiki IoT Platform and its Evaluation Kit
This section summarizes our experience in installing Thingsquare/Contiki platform on the Texas

Instruments Development Kit “cc2538dk”. It required the following tasks to be accomplished:

● Measurement of analogue values on the GPIO(s) (General Purpose Input/ Output)

to simulate an arbitrary sensor input. The sensor data has to be sent to a remote entity.

● Setup of IEEE 802.15.4 communication between cc2538 node and a border router:

○ Wireless Sensor Networks (WSN) can be extended by adding more nodes to the

network. Each of the nodes can act as a router for other nodes.

○ The border router provides the connection from the WSN to IPv4/IPv6 Internet.

● Setup of IP/HTTP communication between cc2538 and a Web server: Application-

6

layer communication is required to support the agent communication (as discussed in

Section 2.2). Instead of HTTP, CoAP (Constrained Application Protocol) which is based

on LWM2M (Lightweight M2M) standard, will be considered in the future.

Following the instructions provided in [1], the following hardware (sensors, nodes and a router)

has been purchased and connected (see Figure 1):

● cc2538 Development Kit (Texas Instruments1) with the following components:

○ 2x SmartRF06 Evaluation Boards,

○ 2x cc2538 Evaluation Modules;

● ENC28J60 Ethernet controller development board (Olimex2);

● Jumper Wires female/female;

● An Ethernet Hub with cables for packet sniffing;

● HTTP-server on remote virtual machine.

Figure 1: Hardware setup with a sensor, a node and a router

The following steps have been carried out in task T1:

1. Testing of the modules using the default firmware (by following the quick-start guide as

1 Texas Instruments: http://www.ti.com/tool/cc2538dk
2 Olimex: https://www.olimex.com/Products/Modules/Ethernet/ENC28J60-H/

7

presented in [2]): During this initial step, we tested the basic functionality of the hardware

and communication. Test packets are sent from one module to another. Afterwards, the

pre-installed firmware has been removed.

2. Flashing the Thingsquare Firmware using SmartRF Studio 7 [3], running one board as

“node”, and the other board as “border router”.

3. Connecting to the Thingsquare cloud (c.f. https://demo.thsq.io/): In this step, the

“node” has been connected to the publicly available Thingsqare cloud. Registering the

“node” in the cloud is usually done automatically, but this did not work for the first try.

The reason was that DNS-Lookup to the pre-configured DNS Server (8.8.8.8) was

blocked by our firewall. Therefore the IP address from the Thingsquare demo server had

to be entered manually (54.247.103.86) using the board buttons + LCD info. After

registering on the platform, the “node” can be integrated into the demo environment by

entering the “PIN” displayed on the LCD.

4. Loading one of the demo programs from the cloud (“blink”, “http-post”, “http-get”):

Using the http-post and http-get examples provide data to be sent to the server.

However, reading the sensor data requires additional libraries from Texas Instruments,

which were not available using the cloud service. This lead us to build a Contiki firmware

image from source, and installation into the flash memory of the nodes.

5. Compiling and flashing own Contiki Image using Eclipse: This step requires the

installation of a toolchain as described in [4] (GNU Toolchain components include the

compiler, linker, assembler, and a debugger). We tested it, but do not recommend it to

the community because of many “dangerous” pit holes. We consider it to be an

important step only if the features of the Eclipse IDE, such as code-autocompletion or

remote debugging using gdb, are required.

6. Compiling and flashing own Contiki Image using “Instant Contiki”. Instant Contiki is

a ready-to-use VM-Image (c.f. [5] for more details). The simulation steps (the Contiki

network simulator, Cooja (c.f. http://www.contiki-os.org/start.html)) can be skipped in this

case. We started with “Step 4: Run Contiki on hardware”. To run Contiki on our target

platform, we had to replace “z1” with “cc2538dk”.

7. Implementing “http-get”, “http-post” based on the examples in the cloud using the

GPIOs as sensor input. To cross-compile the code locally and flash it to platform, both

libraries the cc2538dk_foundation_firmware [6] and the Thingsquare release of Contiki

(thingsquare-mist) are required.

8

2.2. JADE Agent Environment
The introduction of an agent framework into the IoT context moves the communication paradigm

from the client/server communication to peer-to-peer (p2p) communication between

autonomous and proactive software agents. A discussion on the differences is available in [10].

In the context of IoT4Industry, each of the agents can therefore have its own sphere of action,

such as reading and managing data from sensors or sensor platforms, retrieving information

from other agents, publishing information, control actuators, etc.

JADE [7] provides a Java-based agent development framework for creating multi-agent systems

by using an agent communication protocol that is standardised by the FIPA (Foundation for

Intelligent Physical Agents). The agents exchange their messages using the agent

communication language ACL, using communicative acts such as inform, request, agree, not

understood, and refuse. It furthermore enables remote control of agents via a remote GUI.

The main features of JADE are as follows:

● the agent abstraction;

● a simple, powerful task execution;

● asynchronous p2p agent communication;

● publish/ subscribe discovery via a yellow pages service;

● agent communication via NAT (Network Address Translation) and firewalls including

usage of dynamic IP addresses.

In addition to devices running Java SE version 5 or higher, JADE agents can also be deployed

on devices running Android or J2ME-CLDC MIDP1.0. More information on the JADE platform is

available in the JADE-Book [8]. An extension project to JADE is WADE [9], which brings in the

“WorkflowEngineAgent”, which allows for the execution of subsequent tasks within workflows.

Both projects are released under the LGPL license.

2.2.1. JADE Deployment in IoT4Industry
In the following, we describe the deployment of a simple JADE Agent in IoT4Industry

environment. JADE has been installed on several distributed machines in our IoT-lab, e.g. on a

virtual server instance (“IL050”), a physical Laptop-PC (“iotlab1”), and several agents are

9

deployed on Raspberry Pi’s3. The Server IL050 which runs the main agent container, hosts the

Directory Facility (DF) and the Agent Management Service (AMS), the RMA (“Remote

Monitoring Agent”, including the GUI). The IL050 contains a “remote container”, and runs the

agents remotely. Other agents run on the Raspberry Pi’s in the IoT-Lab.

Start-up commands of JADE platform are shown below:
il050 (the main container with DF and AMS):
java -cp "/data/jade/lib/jade.jar" jade.Boot -platform-id IoTAgentPlatform

iotlab1 (with RMA-GUI + 2 PingAgents):
java -cp "/home/iotlab/jade/lib/jade.jar:/home/iotlab/jade/classes" \
jade.Boot -container -host il050 –gui –agents \
"ping1:examples.PingAgent.PingAgent;ping2:examples.PingAgent.PingAgent"

Raspberry Pis (with one PingAgent):
java -cp "/home/pi/jade/lib/jade.jar:/home/pi/jade/classes" jade.Boot \
-container -host il050 –agents "ping-rasp:examples.PingAgent.PingAgent"

For the deployment of multiple agent platforms the following should be noted:

JADE is very dependent on the network configuration, including DNS and IP addresses, and

therefore the setup of the communication only works if the forward and reverse DNS-lookup

between IP addresses and hostnames is possible, and delivers the same results. To be able to

communicate with remote JADE-Platforms, an MTP (Message Transfer Protocol) needs to be

enabled. The default configuration of MTP does not work, because the ports are bound to the

addresses retrieved by DNS-resolved address of the given hostname. In order to enable inter-

platform communication, the DNS can be circumvented by passing the following parameter to

the host of the Main Container for each of the communicating platforms like:
… -mtp "jade.mtp.http.MessageTransportProtocol(http://192.168.48.50:7778/acc)

Another approach to fix the DNS-resolution would be to edit the hostname resolution in the

/etc/hosts file (used for local DNS) and use the IP-address of the network interface instead

of a local address.

2.2.2. Running the “Contract-Net” Interaction Protocol with JADE
One of the interesting features of an agent framework such as JADE, is that predefined

“interaction protocols”, e.g. Contract-Net are already implemented. Interaction protocols consist

of a predefined sequence of communication acts, which go beyond simple publish-subscribe

message protocols that are provided by other messaging systems.

3 Raspberry Pi is a small embedded Linux PC, and an interesting platform for prototyping IoT
applications. It is capable of running a Java runtime, and therefore JADE Agents.

10

In our IoT-lab, the Contract-Net interaction protocol is tested for the following scenario:

3D-Printing facilities can offer to print a product with different time and cost. A “call for

proposals” is distributed from the OrderingAgent to all 3D printing agents called

PrintingFacilityAgent, each of them providing a time and cost proposal depending on

their current utilisation. Based on the proposed offers, the OrderingAgent can select the

printing facility with a time*cost factor fitting best to its needs.

The following example sequence would include one OrderingAgent and four 3D-

PrintingAgent:
● Agent PrintingFacilityAgent1 waiting for CFP...

● Agent PrintingFacilityAgent2 waiting for CFP...

● Agent PrintingFacilityAgent3 waiting for CFP...

● Agent PrintingFacilityAgent4 waiting for CFP...

● Agent OrderingAgent trying to delegate printing-job to one out of 4

responders.

● Agent PrintingFacilityAgent2: CFP received from OrderingAgent@AP.

● Action is printing-job

● Agent PrintingFacilityAgent2: Proposing Time: 7 Proposing Cost: 5 (35)

● Agent PrintingFacilityAgent3: CFP received from OrderingAgent@AP.

● Action is printing-job

● Agent PrintingFacilityAgent3: Proposing Time: 3 Proposing Cost: 15 (45)

● Agent PrintingFacilityAgent1: CFP received from OrderingAgent@AP.

● Action is printing-job

● Agent PrintingFacilityAgent1: Proposing Time: 20 Proposing Cost: 2 (40)

● Agent PrintingFacilityAgent4: CFP received from OrderingAgent@AP.

● Action is printing-job

● Agent PrintingFacilityAgent4: Refuse (no resources)

● Agent PrintingFacilityAgent2@AP proposed 7

● Agent PrintingFacilityAgent3@AP proposed 5

● Agent PrintingFacilityAgent1@AP proposed 3

● Agent PrintingFacilityAgent4@AP refused

● Accepting proposal 7 from responder PrintingFacilityAgent2@AP

● Agent PrintingFacilityAgent2: Proposal accepted

● Agent PrintingFacilityAgent2: Action successfully performed

● Agent PrintingFacilityAgent2@AP successfully performed the requested

action

11

● Agent PrintingFacilityAgent1: Proposal rejected

● Agent PrintingFacilityAgent3: Proposal rejected

Due to the best time*cost value of 35 (7*5=35), PrintingFacilityAgent2 will be selected,

while offers of the other proposing agents will be rejected. In this example

PrintingFacilityAgent4 totally refused the acceptance of the proposal, while the

proposals from PrintingFacilityAgent1 and PrintingFacilityAgent3 were rejected

by the OrderingAgent.

3. Next Steps
Here we briefly present some alternative IoT platforms and alternative agent frameworks to be

considered in an IoT industrial setting. For more information on alternative IoT platforms we

refer the reader on our additional report: “Report of Emerging IoT Platforms for the Industrial

Internet”, while more information on alternative agent frameworks is summarized in Appendix of

the D.5 “Security, Privacy and IPR/Data Protection Requirements translated into Game-

Theoretic Agent Behaviour”.

3.1. Alternative IoT-Platforms

3.1.1 Arduino-based Sensor Platform
To include different types of sensor platforms, such as the Arduino-based sensor platform, an

XBee-based Wireless Communication Shield has been set-up and tested. Arduino (c.f.,

http://arduino.cc) is an open source platform focusing on easy-to-use hardware and software. It

can be equipped with an XBee-Shield (c.f., http://bit.ly/1Nr635Q) together with a WiFi module for

Arduino “Roving RN-XVee”, to provide sensors-agents communication via HTTP.

3.1.2 RIOT-OS
RIOT-OS (c.f., http://www.riot-os.org) provides similar functionality to Thingsquare/Contiki, and

is now actively developed to support more and more platforms. In IoT4Industry, we consider

further replacement of the Thingsquare/Contiki platform by RIOT-OS to gain more flexibility.

3.2. Alternative Agent Frameworks

3.2.1 AKKA
AKKA agents are bound to a single storage location for their lifetime, and allow mutation of that

12

location (to a new state) to occur as a result of an action. Actions dispatched to an agent from

another thread will occur in the order they were sent, potentially interleaved with actions

dispatched to the same agent from other threads.

3.2.2 JIAC
JIAC (c.f. http://www.jiac.de/agent-frameworks/jiac-v/) supports the design, implementation, and

deployment of software agent systems, as well as the development of the BDI (Belief - Desire -

Intention) agents. JIAC can be used with a set of development, configuration and monitoring

tools, such as:

● VSDT (Visual Service Design Tool) tool, which is a BPMN (Business Process Modeling

Notation) editor, and multi-language transformation and workflow simulator;

● Asguard, for controlling distributed multi-agent infrastructures at runtime;

● AWE (Agent World Editor) for modeling and configuring an MAS. It also generates files

for deploying the system;

● JIAC Toolipse, which is an integrated development environment containing all above

mentioned tools (for more: http://www.jiac.de/development-tools/jiac-toolipse/).

Current development of JIAC and publications target industry scenarios (see:

http://www.jiac.de/publications/).

13

References
[1] GitHub website:

https://github.com/thingsquare/hardware/blob/master/ti/cc2538dk/assembly/README.md

[2] CC2538 Development Kit Quick Start Guide. April 2013: http://www.ti.com/lit/pdf/swru347

[3] Texas Instruments, SmartRF Studio: http://www.ti.com/tool/smartrftm-studio

[4] B. Selvig. AN128 - Using GCC/GDB With CC2538. Application Reprot, SWRA553 - February

2014. http://www.ti.com/lit/an/swra443/swra443.pdf

[5] Get Started with Contiki: http://www.contiki-os.org/start.html

[6] Texas Instruments, CC2538 Foundation Firmware. http://www.ti.com/tool/cc2538-sw

[7] Telecom Italia Lab, JADE (Java Agent DEvelopment Framework). http://jade.tilab.com

[8] F. L. Bellifemine, G. Caire, D. Greenwood. “Developing Multi-Agent Systems with JADE”

published by John Wiley & Sons, Ltd. 2007. http://jade.tilab.com/documentation/book/

[9] Telecom Italia Lab, WADE (Workflows and Agents Development Environment):

http://jade.tilab.com/wadeproject/

[10] Jason Bloomberg, “Architecting the Internet of Things with Intelligent Agents”,

http://www.devx.com/blog/agile/architecting-the-internet-of-things-with-intelligent-agents.html

