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loT4Industry in a Nutshell

loT4Industry is an exploratory project funded by the Austrian Research Promotion Agency, for
the period October 2014 — September 2015. It stands for “Secure, Privacy-preserving Agents for
the Industrial Internet”. The core research areas of loT4Industry relate to security, privacy and
IPR/data protection requirements, translated into game-theoretic agent behavior, which is
simulated in a demo factory floor environment, supporting a supply chain negotiation. A demo

factory floor is implemented within our loT-lab, which is located at Salzburg Research.

While it is still not clear which protocols and technologies will become mainstream for the
Industrial Internet, it has become clear that security and privacy will feature strongly in any risk
assessment concerning the adoption of practices using the Industrial Internet. Thus, in
loT4Industry, we focus on the use of policy-enacting, multi-agent systems that securely manage
machines and manufacturing cells, and we build a feasibility demonstrator based on open
source tools and firmware. In addition, loT4Industry helps us to prepare for internationally
recognized contributions to science and technology in the field of Industrial Internet, notably in
Horizon 2020.



loT4Industry Task 3 Description

(from the loT4Industry project proposal)

D3: Specifying Game-Theoretic Behaviour for Agents in Industrial Supply Chains

Goals:
1. Survey paper on game theory and agents

2. Specification formalism for game-theoretic loT agents

Description of the content

We need to survey in some detail, the current work on game theory (e.g. for supply chain
management) and where applicable, the use of agent technology (or concepts) for
formulating game theoretic problems in optimisation. On the basis of the survey work, we
should be in a position to formally specify loT Agents that can negotiate with each other,

on supply chain optimisation through network effects.

Method
Desktop research on detailed results in game theory and use of agents for game

theoretic experiments.

Milestones, results and deliverables
03/2015: Technical report published — formal specification of 0T agents with security
concerns

08/2015: Survey paper submitted or close to submission




1. Problem Statement

The loT4Industry project investigates Industrial Internet (/ndustry 4.0) applications and their
requirements related to privacy, security and data protection. In D.2 “/oT Technology Tracking
and Industrial Requirements for Security, Privacy and IPR/Data Protection”, we summarize the
major privacy and security concerns that have been recognized so far as the highest rated
problems in the adoption of Internet technologies for Industry 4.0. In this document, we further
discuss how the agent’s behavior can be specified via Game Theory (GT for short) and its
mathematical models.

We base our approach on two major technology gaps such as: (1) there exist loT frameworks,
but they do not easily integrate with agent frameworks; and (2) there are tools for strategic
analyses based on GT models, but there is no formalism for specifying the GT behaviour of an
IoT agent. Hence, in our approach, we firstly survey the current work on GT and where
applicable, the usage of agent technology for formulating GT problems in Industry 4.0 (e.g. in
optimization, security, privacy, etc.). Secondly, on the basis of the state-of-the-art in supply
chain optimisation through network, we formally specify behaviour of loT4Industry agents.
Based on our findings presented in D.2, we identify coexistence of regular and malicious
sensor nodes, and their interaction in WSN as an application of high interest to be
implemented in loT4Industry’ 3D printing-related supply chain environment. After reviewing
currently present agent technologies for managing sensors and machines, and w.r.t. the
loT4Industry scenario that is described in D.6 “Demo Implementation of Industrial loT Factory
Floor based on Arduino and Raspberry P, we specify agents behaviour in loT4Industry in a
form of a malicious sensor node detection game.

A malicious sensor node detection game is a signaling game based on Bayesian game with
imperfect information, which was initially presented in [GIBB92], and later in [LILJ12] [WACKAO09].
In our work, we use a signaling game model to solve the coexistence of regular and malicious
sensor nodes that we further extend by the OWASP (Open Web Application Security Project)
Internet of Things (loT) Top 10 project, and its taxonomy of security problems with loT devices.
Furthermore, we focus towards addressing those security problems that can result in data loss
or corruption, and can lead to complete device takeover. For example, we focus on insecure
Web interface, insecure network services, privacy concerns, insecure cloud interface, and

insufficient security configurability.



Document organization. After presenting the state-of-the-art in the field of GT and agent
technologies for managing sensors and machines, our work in Section 2 continues towards
specifying GT-based behaviour of loT4Industry agents in (additive) manufacturing supply chain.
Furthermore, Section 3 presents the loT4Industry signaling game model which incorporates
both security and supply chain negotiation aspects of simulated agent behaviour. This model
will be further integrated in the proposed agent system and its libraries, which will be discussed
later in D.5 “Security, Privacy, and IPR/Data Protection Requirements Translated into

Game-Theoretic Agent Behaviour’. Finally, Section 4 gives some conclusion remarks.

2. State-of-the-Art in Agent Technology and Game Theory for
Industry 4.0

Agent technology is a promising approach for future manufacturing systems, which require a
stable reconfigurability, robustness and good responsiveness. The potential of agents is in
designing decentralized control systems over distributed autonomous and cooperative system
entities. In parallel to agent technology, GT has ability to support the agents in the decision
making, when various models of cooperation can be applied, or decisions have to be made
either continuously (differential games), or over time (discrete games), etc. Therefore, in
loT4Industry, we combine agent technology and GT mathematical models to support the
functionality of Industrie 4.0 applications in a more effective way.

In this report, we firstly discuss current agent-based technologies for managing sensor and
machines, and look at the examples of agent-based industrial deployment, specifically in the
field of supply chain applications. Secondly, we explore the current usage of GT approaches to
support web cooperation, and collect examples of GT-based applications in industry and supply
chain management. Based on both state-of-the-art technologies for agents and GT industrial
deployment, and the loT4Industry scenario, which is presented in D.6 “Demo Implementation of
Industrial 10T Factory Floor based on Arduino and Raspberry PP, in this document we make a

step further towards specifying the loT4Industry’s agents and their GT-based behaviour.

2.1 Agent Technology for Managing Sensors and Machines

According to the definition of FIPA (Foundation for the Intelligent Physical Agent), an agent is “a

kind of entity with autonomy, activity, mobility, reactivity, sociality, intelligence and other
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anthropomorphic features” [FIPA02]]WOOLO02]. There are two sets of agent’s technology
deployment such as [PEMAOQS]: (i) multi-agents and (ii) autonomous agents. While autonomous
agent paradigm is appropriate in application domains with high requirements for systems with
decision making autonomy, multi-agent paradigm is considered to perform well in the following
application domains:

(i) domains with missing data or missing knowledge required for computation,

(ii) domains with a partial or temporary communication inaccessibility,

(i) domains with restrictions on the information sharing (e.g. e-commerce applications,
supply-chain management and e-business),

(iv) domains characterized by time-critical response and high robustness in distributed
environment (e.g. time critical manufacturing or industrial systems control, with re-planning, or
fast local reconfiguration), or

(v) scenarios that require solving complex problems, or controlling complex systems.

Fundamental challenges in Industry 4.0 applications related to agents are: agent-based
decentralized management and coordination of physically distributed sensors and machines
(smart objects). For example, decentralized sensors and machines need to autonomously
update their responses in a dynamically changing environment, without human intervention. In
parallel, they must coordinate their actions with nearby sensors. Such challenges have long
been the topic of research in the area of multi-agent systems, resulting in an extensive set of
formalisms, algorithms, and methodologies developed so far. One such example is known in the
literature as DCOPs (Distributed Constraint Optimization Problems), which brings several
algorithms [ROJCO09] as summarized below:

e Algorithms that generate optimal solutions, such as: Adopt (Asynchronous
Distributed Constraint Optimization), DPOP (Dynamic Programming Optimality
Principle), and OptAPO (Optimal Asynchronous Partial Overlay). These algorithms are
not suitable for sensors that exhibit constrained computational and communication
resources (e.g., either the computational cost or the number or size of messages
exchanged increase exponentially with the problem size).

e Approximate stochastic algorithms for solving DCOPs are typically based on entirely
local computation. They maximize a global utility function by having each agent update
its state on the basis of the communicated (or observed) states of local neighbours that

influence its individual utility. These approaches scale well and are thus well suited to
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large-scale distributed applications, but they often converge to poor-quality solutions

because agents typically communicate only their preferred state, failing to explicitly

communicate utility information.
To address the above shortcomings, the authors in [ROJCO09] present the results of the
Adaptive Energy-Aware Sensor Networks project, which brings an approximate, decentralized
solution that maximizes the social welfare of a group of agents (maximizing the sum of each
agent’s utilities) when any individual agent’s utility depends on its own state and the state of a
small number of interacting neighbours. This solution is based on the max-sum algorithm, a
message-passing technique that is often used to decompose complex computations on single
processors. It is evaluated on real sensor data within (i) the CNAS (Collaborative Network for
Atmospheric Sensing) demonstration project and its sensor network for ground-level
atmospheric monitoring, and (ii) the University of Southampton’s network of weather sensors,
which are located on England’s southern coast. The evaluation results shown that the max-sum
algorithm produces better solutions than approximate stochastic algorithms (e.g., Distributed
Stochastic Algorithm), requires significantly less computational and communication resources
than algorithms such as DPOP, and is robust to message loss [ROJC09].
Managing sensors and machines within an 10T setting brings many benefits, as discussed in
[ZBSA12], although there are remaining challenges to be solved, such as security, trust and
privacy [BAHOO08][HU12][WUZM11]. For example, malicious subjects could pose serious threats
to the normal operations of networks and damage the credibility of networks through fake
services, conspiracy, non-cooperation and other malicious behaviour [WEBE10]. In order to
decrease security concerns, increase reliability and credibility, and ensure information
collecting, sharing and processing in dynamic loT environments, the authors in [XUBC13]
propose an autonomic agent trust model, that is based on a novel architecture called TAEC
(Trustworthy Agent Execution Chip). TAEC provides a reliable platform for the safe operation
of agent. The core idea is to use the high-security, cost-effective software and hardware
platform for the safe operation of agent. The proposed approach includes installation of TAEC
on each sensor node, providing an autonomic trusted execution environment for the agent. The
agent can run on the TAEC platform to complete its tasks, which brings double benefits: (i)
protecting nodes and (ii) protecting the agents. Finally, the authors in [XUBC13] emphasize that
using agent technology to build the credibility protection model for loT systems requires that

agents and agent’s platforms have to be built on all sensor nodes [XUBC13].



2.1.1 Examples of Industrially Deployed Agent Technologies
The authors in [PEMAOQ8] survey agent technologies with the potential to be deployed in industry
domains. They identified the following bottlenecks in fast and massive adoption of the
agent-based solutions in industry:
e limited awareness about the potentials of agent technology in industry,
e limited publicity of the successful industrial projects that employ agents, and
e misunderstanding about the technology capabilities, over-expectations of the early
industrial adopters and subsequent frustration.
The same authors present several examples of multi-agent usage in industrial areas [PEMAOQ8]:
e shipboard automation distributed control and diagnostic;
e agent-based production planning of engine manufacturing (e.g. mass-production of car
engines in SkodaAuto);
e agents in Unmanned Aerial Vehicle (UAV) deconfliction (e.g. Air Force Research
Laboratory, NY) [PSPUO06];
e agents in RFID (Radio Frequency ldentification) for data collection (from RFID readers)
and filtering.
Development of agent applications is often supported by international defense industry, and
makes an important use of the mental state modeling approaches (such as BDI
(Belief-Desire-Intention) approach). In addition, multi-agent systems contribute to the field of
distributed diagnostics and partial hypothesis fusion, which is of interest for various industrial
companies, e.g. car diagnostics (Toyota, Bosch, and Denso), or supply chain integration in
which the supplier and the customer are mutually dependent on the shared data and
knowledge. However, at the same time the trading partners may be reluctant to share company
sensitive information, since its disclosure may cause their competitive disadvantage. In such a
semi-trusted environment, some auctioning and contracting GT-based techniques may

be applicable, which is one of the main research premises in loT4Industry.

2.1.2 1oT Agents for Industrial Supply Chain

Due to frequent changes in both the production and the market needs, supply chain remains a
domain in which the information and data required for efficient planning are dependent on the
shared data and knowledge. One of the reason for it could be that the business partners in

dynamic supply-chain environment are rather not willing to provide a complete set of information
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to a centralized planning point [PEMAOQ8], which is calling for an additional information strategy
to be applied.

Besides numerous research projects in the field of agent-based logistics and supply chain
planning, there is also a substantial commercial success reported in the multi-agent research
community, as discussed in [PEMAOQ8]. A typical example of an early adopter of the multi-agent
technology in supply chain domain is Whitestein Technologies’ Living Systems/ Adaptive
Transport Network (LS/ATN) that was built for ABX, European logistics company. Whitestein
Technologies uses an agent-based solution to (i) achieve performance scalability, (ii) reflect the
geographical distribution of the nodes, (iii) provide local re-planning without the need to rebuild
the whole plan, and (iv) increase robustness in a way that a single point of failure could be
easily avoided. Whitestein Technologies carried out several performance tests to determine the
overall cost saving potentials of the LS/ATN system. For example, they achieved 11.7% cost
saving, based on performance analyses of 3500 transportation requests [DOCAO05].

Another successful agent-based commercial deployment is called I-scheduler, which is a
logistics scheduling system that provides a decision support to 46 Very Large Crude Carriers
(VLCC) [HISWO05]. Besides the scheduling of ship operations, I-schedulers is successfully
deployed in road transportation applications such as those used by several UK road logistics
operators. These applications have been tested with two sets of client data involving 50 and 200
trucks [HISWO06]. The agent technologies are successfully applied not only in supply chain, but
also in the domains such as production planning, e.g., mass-oriented production and
project-oriented production [PASA05]. For example, ExPlanTech is one of the successfully
deployed production planning multi-agent systems for monitoring and data collection. One of the
important use cases of this system is decision making support that describes how changes in
resource availability (e.g., hiring new people), in individual project due dates and project’s
priorities affects the global operation of the factory. ExPlanTech is integrated in Modelarna
Liaz’s local ERP system (a shop that manufactures casts, forms, and moulds for the leading
European car makers) [PEVBO05] [PRCV06].

The AgentSteel System for online planning of the steel production is a result of the cooperation
between the Saarstahl AG and DFKI GmbH [JMLFO05]. This system explores the InteRRaP
multi-layered generic agent architecture [MULL96], which integrates reactive and deliberative
behaviour, and is further integrated with the ITenvironment of Saarstahl AG.

Finally, several other research projects that investigates deployment of agent technology in

virtual organization, supply chain management and inter-enterprise interoperability provisioning
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are discussed in [PEMAOQOS8]; e.g., Conoise (http://www.conoise.org/), Ecolead (see:
http://www.ecolead.org), Athena (see: http://www.athena-ip.org/), AgentCities (see:
http://www.agentcities.org/), COAX (see: http://www.aiai.ed.ac.uk/project/coax/). The authors in
[SEFAOQ7] investigate supply chain planning mechanisms supported by multi-agent systems,
considering the state-of-the-art agent technologies in supply chain, such as Fox at al. [FOBTO00],
Swaminathan [SWAMB98], Strader et.al. [STRA98], Montreuil et al. [MOFAOQO].

2.2 Game Theory and Web-Based Cooperation

John von Neumann and Oskar Morgenstern are considered as fathers of modern GT, which
basic concepts have been presented in “Theory of Games and Economic Behaviour’
[NEMOA44]. In loT4Industry, we are particularly focused on the applications of GT to Supply
Chain Management (SCM). The authors in [CANEO4] emphasize three GT-based approaches
with the potential to be used in SCM, such as: (i) static games: non-cooperative, non-zero sum,
and cooperative games, (ii) dynamic games: differential games, and (iii) games with
asymmetric/incomplete information.

In the following, we summarize the main characteristics of each of the tree GT categories, as
discussed in [CANEO4].

e Non-cooperative static games: John Nash formally introduced the solution concept to
non-cooperative static games in 1950. Here, the agents select strategies simultaneously
and are thereafter committed to these strategies, e.g., simultaneous move, one-shot
games. Non-cooperative GT seeks a rational prediction of how the game will be played
in practice. From the perspective of SCM, it is not clear how a manager implements
mixed strategy. Hence, the authors consider only non-cooperative games with pure
strategies.

e Cooperative static games: To model situations and strategies to support sharing
aspects and the synergy of cooperation, game theorists developed cooperative games.
By solving a cooperative game, we calculate how much each agent should pay in a cost
situation (to lower costs), or to receive in a profit situation (to increase profits).
Cooperative GT allows modeling outcomes of complex business processes (e.g.,
negotiations), and answers questions, such as how well is the firm positioned against
competition [BRST96]. In cooperative games, agents are free to form any coalitions that

are beneficial to them.
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There are several solution approaches to cooperative games, in which players share
utility via side payments (called transferable utility cooperative games). For example,
the Shapley value [SHAP53] has found numerous applications in economics and political
sciences, considering the issue of fairness through the following conditions:

e players not adding any value to the game should not benefit from it,

e changing the names of the players should not affect their allocations, and

e additivity of payoffs.

Discrete dynamic games (games in which decisions are made over time): The authors
in [STAC34] introduces the simplest possible dynamic game with sequential moves (in
discrete time). Apart sequential moves, in dynamic games with simultaneous moves both
agents take actions in multiple periods. There are two major categories of multiple period
games: games with time dependencies and without time dependencies.

o Multiple period games without time dependencies: These games are known
as repeated games, because the exactly same game is played over and over
again. Although repeated games have been extensively analysed in economics
literature, they have not found many applications in the SCM literature.

o Multiple period games with time dependencies: In these games agent’s
payoffs in each period of time depends on both previous and current actions.
These games have found wide applications in SCM, where they are known as
stochastic games or Markov games. Stochastic games were developed by
Shapley [SHAP53a] and later extended by Sobel [SOBE71] [KISO74] [HESO84].
The theory of stochastic games is also presented in [FIVR96].

Differential dynamic games: Differential games provide a natural extension for
decisions that need to be made continuously. Although theory for stochastic differential
games does exist, applications in SCM are quite limited [BAOL95].

Signaling games: Cachon and Lariviere in [CALAO1] consider a model of a signaling
game with one supplier and one manufacturer. The manufacturer always benefits from a
larger installed capacity, in case demand turns out to be high, but it is the supplier that
bears the cost of that capacity. Hence, the manufacturer has an incentive to inflate her
forecast to the supplier, and the supplier should view the manufacturer’s forecast with
skepticism.

Screening games: In a screening game, the player who lacks information is the first to

move. For example, in case that a game is based on the supplier-manufacturer game
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from [CALAO1], the supplier makes the contract offer. In the economics literature, this is
also referred to as mechanism design, because the supplier is in charge of designing a
mechanism to learn the manufacturer’s information [POWH99].

Bayesian games: In a Bayesian game, each player uses Bayes’ rule to update his
belief regarding the types of the other players. See [FUTI91] for more information on
Bayesian games. An example of a Bayesian game is the capacity allocation game, that
is studied in [CALA99], in which a single supplier has a finite amount of capacity. In this
game, there are multiple retailers, and each of them knows his own demand, but not the
demand of the other retailers. The supplier announces an allocation rule, the retailers
submit their orders, then the supplier produces and allocates units. If the retailer’s total
order is less than capacity, then each retailer receives his entire order. If the retailer’s
total order exceeds capacity, the supplier’s allocation rule is implemented to allocate the
capacity. The issue is the extent to which the supplier's allocation rule influences the
supplier’s profit, the retailer’s profit and the supply chain’s profit.

Biform games: Biform games, developed by [BRSTO03], can be thought of as “a
non-cooperative game with cooperative games” that leads to specific payoffs. Biform
games have been successfully adopted in several SCM papers. The authors in
[ANBZ01] consider a game in which multiple retailers stock at their own locations as well
as at several centralized warehouses. The authors in [GRSOO01] analyse a similar
problem, but allow retailers to hold back the residual inventory. The authors in
[PLTAO1a] [PLTAO1b] analyse two similar games between two firms, with an option of
pooling their capacity and investments in order to maximize the total value. In the first
stage, firms choose investment into effort that affects the market size. In the second

stage, firms bargain over the division of the market and profits.

2.2.1 Game Theory for Industrial Supply Chain

In SCM, Web-based cooperation between suppliers and customers goes far beyond the “l-cut,

you-choose” method, or simple divisible procedures that consider proportionality and envy-free

allocation of resources. In fact, one of the main features of supply chain is — cooperation, which

is defined as the process of coordinating goals and actions of agents [THUNO5]. This is how GT

become an essential tool in the analysis of supply chains with multiple agents, especially when

the agent’s objectives are conflicting.
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In terms of specific applications in SCM, the authors in [HADSO00] consider the newsvendor
centralization game, in which multiple retailers decide to centralize their inventory and split
profits resulting from the benefits of risk pooling. [HADSO0O0] further show that this game has a
non-empty core under certain restrictions on the demand distribution.
As noticed by [CANEO4], most of the existing GT approaches in SCM utilize only a few GT
concepts, in particular concepts related to non-cooperative games. Some attention has been
given to stochastic games but several other important areas need additional research, such as
cooperative, repeated, differential, signaling, screening, and Bayesian games. Marketing and
economics have been far more successful in applying differential games since deterministic
models are standard in these areas.
Apart SCM, there are other industrial domains in which GT has been used so far, such as
sensor networks with incentives for forwarding nodes [BUBOO02] [WACKO08] and for punishing
misbehaving nodes [SRNCO03]. The autonomous sensor network can make a use of
non-cooperative GT techniques to optimise the system. For example, Nash Equilibrium can be
used to get optimal solutions for energy conservation.
GT is also a powerful tool for Wireless Sensor Network (WSNSs), energy harvesting technologies
[NHRBO7], Game Theoretic Energy Balance Routing (GTEBR) algorithm for uneven energy
consumption [JICJ07], the energy efficient self-organization protocol [OXZ004], decentralized
adoption in sensor networks for managing sensor activity with low coordination [CHTAO4], etc.
GT could be seen as a powerful tool for the design and control of multi-agent systems
[RSSG10] [GMWI11], which requires two steps:

e Modeling the agent as self-interested decision maker in a GT environment (distribution of

the optimization problem (game design)), and
e Specifying a distributed learning algorithm that enables the agents to reach a desirable

operating point, e.g., the Nash Equilibrium of the designed game.

3. loT4Industry Agents and their Behavior in Industrial Supply
Chain

Our motivation to explore multi-agent systems and GT in an loT industrial setup in the

loT4Industry project, can be summarized through several identified technological problems:
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1) Frameworks for loT: There are various loT frameworks being developed and even marketed
already, which differ in at least three dimensions:

e their technological readiness level;

e their use in different value propositions, e.g. Xively, Google NEST; and

e their openness in terms of source code licensing and API usage by third parties.
2) Industrial requirements for loT: Knowledge-based “semantic” agents have not been widely
explored in the past 15 years of Semantic Web research. The Eclipse-based JADE platform is
one of the most comprehensive agent platform for research, but it is neither integrated with IoT,
nor has it been exposed to industrial applications in manufacturing, nor it is modular as would
be needed for ad-hoc networking scenarios and cross-company interoperation scenarios. Also,
the FIPA agent protocol needs to be “stress-tested” against industrial and IoT requirements.
3) Formal description of the GT behaviour of agents: Society can expect that normally
machines comply with technical regulations and safety guidelines. In the lo, and in business
settings in general, the same will apply and therefore, agent-like software behaviour will have to
demonstrate compliance with regulations. One promising approach could be to demonstrate
certain GT properties of agents, e.g. truthfulness or compliance with specific GT setups.
While there is a body of over 40 years of mathematically well-founded research (known as
operations research), very little of this knowledge has found its way into applied computer
science, let alone web-based e-commerce. Hence, in this exploratory action, we experiment
with creating environments where agents may differ in strategy, but are at least, auditable (this
means we can analyse their actions and decision processes post-hoc), so as to understand the
dynamics when e.qg. logistics and manufacturing agents negotiate and renegotiate delivery plans
between suppliers and customers, in order to optimise for a network benefit (e.g. in a multi-actor
SCM scenario).
4) Omniscience in the Web is impossible: GT addresses a fundamental characteristic of our
world and the World Wide Web: actors always have limited knowledge, have differing
knowledge, can be truthful or less truthful, and may be informative or less informative. The
WWW as a software-driven machine gives us to a large degree, the possibility to specify rules
that must be obeyed by machines and the possibility to specify machine behaviours that differ
widely from each other, but at the same time, comply with the overall rules of the game. One
interesting research question is then: what kinds of agent behaviour should be “freely

programmable” and what kinds of agent behaviour need to be externally constrained, verifiable,
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or at least auditable and to what extent can a software-based environment enforce such
mandatory behaviour?

5) Compliance tests for security, privacy and overall trustful behaviour: Machines that
make decisions on behalf of humans put the onus of responsibility on the organisations that
make use of the machines. In this exploratory action, we would like to experiment with ways to
audit and trace agent behaviour, and to test agents for mandatory behavior before they can be
‘released”.

The design and the development of the loT4Industry agent system is based on the description
of architecture from D.6 “Demo Implementation of Industrial IoT Factory Floor based on Arduino
and Raspberry Pi". Once we are able to simulate simple supply chain management and monitor
manufacturing processes (additive manufacturing processes), we will then extend the
functionality of the agents by adding GT behaviour patterns to the test bed. This requires some
further research into how agent behaviour must be separated from environment-behaviour,
especially to cover the Industry 4.0 requirements related to dynamic decision making and
secure operation of supply chains. This will be the topic of D.5 “Security, Privacy, and IPR/Data
Protection Requirements Translated into Game-Theoretic Agent Behaviour”. In the following, we
specify the loT4Industry agent behaviour to implement GT models, by providing the best

strategies for security and privacy in an loT-based SCM industrial setup.

3.1 Specifying GT-based Agent Behaviour in Industrial Supply Chain
loT4Industry explores applicability of signaling GT as a methodology in SCM. As discussed by

Cachon and Lariviere in [CALAO1], one solution for a high demand manufacturer is to give a
sufficiently large lump-sum payment to the supplier: the high demand manufacturer’s profit is
higher than the low demand manufacturer’s profit, so only a high demand manufacturer could
offer that sum. This has been referred to as signaling by “burning money”. A better signal is a
contract offer that is costless to a high demand manufacturer but expensive to a low demand
manufacturer. An example of such a signal is a minimum commitment, which is costly only if
realized demand is lower than the commitment, because then the manufacturer is forced to
purchase more units than desired. That cost is less likely for a high demand manufacturer, so in
expectation a minimum commitment is costlier for a low demand manufacturer.

In loT4Industry, the agents “perceive” their environment. One class of percepts (e.g., agents’

observations) collects the mandatory rules of the game/ strategy in which the agents participate.
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For example, the core of collaboration in SCM is based on a relationship between supply and
demand. Effective planning of supply and demand is the critical task that needs to be designed
and mathematically modeled. Hence, we firstly design the supply and demand collaboration
graph, shown in Figure 1, which illustrates the way both demand and supply face the market's

needs when purchasing or selling their units, while the price is a key factor for them to get profit.

market

Demand price Supply

Figure 1: Demand-Supply collaboration graph in loT4Industry

Secondly, we design a demand-supply collaboration game model by adopting collaborative
planning model that is presented in [ZHYHO05]. In the following, both the optimal demand and
the optimal supply models, are given. Both models utilize the bargaining games, striving to

maximize their profits.

3.1.1. The Optimal Demand Model (maximizing profit)

Note that the optimal demand model is based on [ZHYHO05], in which ¢ stands for time, and d
denotate demand. The decision variables of the demand model are as follows:
X4(t): the output of demand to supply at time ¢

y4(t): the output of demand to market at time

a,: the bargaining price between demand and supply;

a,(t): the price of demand to market at time t;

b,: the unit cost;

cy4- the unit tax value;

h : the unit stock charge;

W: The maximum limit of stock;

[(0): The initial value of demand stock;

m: The resources’ quantities of demand.

The optimal demand model that maximizes demand profit is defined in (1):
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T
max g{(ad—bd) x0) +(aft) —b; — c )y t) — h1(t)} (1)

where I,(t) < W, (t=1, 2, ...T) represents stock limit of demand.

3.1.2. The Optimal Supply Model (max. profit)
Similar to the optimal demand model, in the optimal supply model (denoted by s), the decision
variables can be defined as follows:

x4(t): the output of supply to demand;

y,(t): the output of supply to market;

a,: the bargaining price between demand and supply;
a (t): the price of supply to market at time ¢

o : the converted ratio;

b,: the unit cost;

C,: the unit tax value;

h : the unit stock charge;

W: The maximum limit of stock;

[(0): The initial value of supply stock;

m: The resources’ quantities of supply.

The optimal supply model that maximizes supply profit is given in (2):
T

max g{a(as—bs = c)(xs(0) + ys(0) — (apx(t) —alt)y(t) — h 1)} (2)
where I(t) < W, (t=1, 2, ...T) represents stock limit of demand.

3.1.3. The Demand-Supply Model as a Signaling Game
We start from the basic definition of the signaling game model, which is discussed in [GIBB92]

[LILJ12], and which we further translate according to /oT4Industry requirements:

A signaling game is a dynamic game of incomplete information involving two agents. In
loT4Industry, we refer to agent 1, who acts on the demand side as a Buyer (Buy), and to agent
2, on the supply side, as a Seller (Sel). We can also put both agents Buy and Sel into a different

context: a manager agent monitors the game, communicates with other agents about status of
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each payouts, share common knowledge among plays (but not private knowledge of agent),
determines winners or applies other game rules, e.g. time limit of a game, etc. The manager
agent also provides the rules of the game to the agents.

In case of 3D printing farm, the timing of a signaling game can be defined as follows:

1. The buyer from the 3D printing farm needs to buy a filament in a specific colour, quality, and
quantity (we call it type, from a set of filaments TYPE = {type,, ... , type}), according to a
probability distribution p(type;), where p(type,) > O for every i and p(type)) + - - - + p(type,) = 1.

2. The buyer from the 3D printing farm observes filaments type, then chooses one to buy (we
call a signal) m, from a set of possible signals M ={m,, ..., m}.

3. The seller who provides filament, observes a filament m; which is selected by the buyer, then
chooses an action a, from a set of feasible selling actions A = {a,, ..., a,}.

4. The payoffs of the buyer and the seller agents are given by U, (type, m, a,) and U_,(type,
m, a,), respectively. Different types of buyers have different payoff functions. Each player knows

all information except that the seller doesn’t know type..

A pure-strategy perfect Bayesian equilibrium of a signaling game is a pair of strategies
(mx(type)), a,*(m;)) and a probability distribution P(t|m), satisfying the following (3-5):
e Given P(type|m,) and m, the seller’s action a,*(mj) maximizes its expected payoff;

i.e., ax(mj) solves:
maxak ZP(lypel|m) Ur(typeia maak) (3)

e Given a'(m), the buyer’s signal m’*(type,) maximizes its payoff;
i.e., m*(type,) solves:
max,,; Us(type,,m;,a'(m,)) 4)
e For each m, if there exists type, such that m'(type)) = m,P(type,|m) follows Bayes’ rule

and the buyer's strategy:

P(type m) = {Z(—P(;) if m(ype;) = m (5)
Pe;

=

0 otherwise
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3.2. Specifying GT-based Agent Behaviour for Security, Privacy and Data

Protection

In order to protect the transmission of code and data, we can rely on traditional network security
technologies, which are mature and effective. For the problem of viruses attacking execution
environments and host systems, there is a series of methods available, such as the sandbox,
digital signature, authentication, authorization and resource allocation, proof code carrying, code
inspection and audit. However, it is more challenging to protect task codes and data attacked by
execution environments and host systems.
Therefore, in loT4Industry we specify signaling GT-based agent behaviour covering security
requirements, which are related to tasks and data attacks. Our game model involves two
players: an attacker (called Atf) and a defender (called Def), and two basic moves: (i) a signal
sent by the attacker, and (ii) a response taken by the defender. The communication between the
attacker and the defender occur every time when the defender receive a “signal” about the
suspicious behaviour in the environment, or about the presence of the attacker. Hence, we
firstly define perfect Bayesian equilibrium for signaling games and describe the various
situations when the communication between the attacker and the defender exist, ranging from
zero information, via incomplete, up to complete information settings. We define equilibrium for
such communication situation between Att and Def, which is determined by the costs of signals
between (i) Att and Def, and (ii) Att and the core system.
The defined equilibrium will be later translated into the agent behaviour. A player's strategy in
any game could be presented in a form of a plan of actions. Firstly, we define all major possible
attack points, as shown in Figure 2. For example, the attacker can try to access the IoT system
by attacking either sensor nodes (or near sensor agents), or the loT gateway, or the core loT
system. Note that the IoT Gateway is added as an important part of lIoT architecture, with the
role to:

e provide sensors with a single point of contact with external networks by using WiFi,

GSM, or some other type of connectivity;
e perform the pre-processing of information (e.g. message filtering and aggregation),
before they are sent to the data center;
e handle system logging every time it is required,;

e act as a single point of access for monitoring the selected area of the environment;
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e provide failure and disaster recovery in case of any action that may result in an
interruption of gateway processing, at the first line of protecting the core IoT system;

e automatically provide critical security fixes; etc.

Core loT

system

Gateway
possible sensors /
attacks near sensor

agents

Figure 2: Possible attack points in loT4Industry

A pure strategy for Aft in a signaling game is a function m(type,) specifying which message
(signal) will be chosen for each type that nature might draw, while a pure strategy for Def is a
function a(m)) specifying which action will be chosen for each message that Att might send. A
set of pure strategies can be illustrated by using the attack graph as shown in Figure 3.

Different attackers have different interests (which is here presented in a form of a payoff
function). In order to simulate a set of possible strategies in loT4/ndustry, we additionally take
into consideration the OWASP (Open Web Application Security Project) Internet of Things (loT)
Top 10 project. OWASP summarizes all known security problems with loT devices, and
methods to prevent them, through the following categories:

e [|1: Insecure Web Interface

e |2: Insufficient Authentication/Authorization
e [3: Insecure Network Services

e |4: Lack of Transport Encryption

e |5: Privacy Concerns

e [6: Insecure Cloud Interface
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e |7: Insecure Mobile Interface

e 18: Insufficient Security Configurability

e 9: Insecure Software/Firmware

e 110: Poor Physical Security
We are particularly interested to address security problems that can result in data loss or
corruption, which therefore, can lead to complete device takeover. Hence, we focus on insecure
Web interface (I1), insecure network services (13), privacy concerns (I5), insecure cloud
interface (16), and insufficient security configurability (18) when defining the player's pure
strategies. As an example attack scenario, we refer on OWASP’s case of the web interface
reporting "Forgot Password" message, upon entering an invalid account which informs the
attacker that the account does not exist. Once valid account is identified, password guessing
can begin for an indefinite amount of time if no account lockout controls exist [OWASP].
In Figure 3, we translate the above strategy into the attack graph, by using the following
notation: L denotes a location of the attack, which could be either sensor nodes, or loT
Gateway, or loT core system (see red arrows in Figure 2), and (ii) C denotes consequences of
the attack:

e L1: attacking sensors/ near sensor agents

e | 2: attacking loT gateway

e L 3: exploit sensor gateway using changed username
and/or password

e L4: exploit sensor gateway using cross-site forgery

e L5: attacking loT core system

e LG6: direct attack on loT core system

e C1: access via sensors/ near sensor agents

e (C2: access via gateway

e (C3: access based on changing the default username and/or password

e (C4: access based on cross-site scripting

e (C5: SQL injection, or data loss and corruption.
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Figure 3 illustrates the attack graph. In order to reach the target, the attacker would firstly try to
access the loT system via sensors or near sensor agents. After “conquering” sensors/near
sensor agents, the attacker goes further by either attacking the loT gateway (L2) or the IoT core
system (L6), which will directly lead to data loss, or corruption of the system (C5). After attacking
the IOT gateway, the attacker can either exploit sensor gateway using changed username
and/or password (L3), or using cross-site forgery (L4). Both consequences, C3 and C4, would

only lead to further attacking of the core system (L5) and data loss and corruption (C5).

o 14 L5
L2 C4 5
ERN 16 -

Figure 3: Attack graph

3.2.1. The loT4Industry Security Model as a Signaling Game

After defining the attack graph, we need to define perfect Bayesian equilibrium for signaling
games with two players: Att and Def. We also need Bayesian equilibria to satisfy the following
two criteria [GIBB92]:

1. Sequential Rationality. WWhenever an agent is called to play, she does something optimal,

2. Consistency of beliefs. What is optimal often depends on what an agent believes about the
opponent(s), and we want to rule out an agent thinking something that is contradicted by the
equilibrium strategies.

The denition below capture the above criteria in an easy notation [GIBB92]:

Definition 1. A (pure) perfect Bayesian equilibrium in a signaling game (of the form described

above) is a strategy profile s” and a system of beliefs u such that

1.s,(0) solves max,, < u,(a;,S,(a,); 0)forall 6 € ®
2.s,(0)solves max, c ;; ¥ WO |a)) uya,, a,,0) forall a, € 4,
(T

3. W |a,) satisfies Bayes rule whenever applicable (e.g., whenever dividing by zero could be

avoided).
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The attacker’s chosen strategy (attack action) corresponds to the chosen attack path (Figure 3).
The attacker goal is to find the strategy that maximizes her expected payoff (see the equation
(3) Section 3.1.3) by estimating whether each causality relation is possible or not. The attacker
compares her expected payoff for each path, and chooses the best one. Similarly, the main goal
of the defender is to find the strategy that maximizes her expected payoff, and for that purpose,

we use the equation (4) from Section 3.1.3.

4. Conclusion

One of the main research premises of the loT4Industry project is to overcome some of the
greatest barriers that largely inhibit business from adopting the Industrial Internet, such as
barriers related to security concerns. As found through many interviews with the industrial
partners, the industry is not very positive when it comes to sharing company sensitive
information. Therefore, in loT4Industry our proposal is to use certain GT-based techniques such
as signaling games, which incorporate both security and supply chain negotiation aspects of
agent behaviour, without revealing sensitive information to the outside world.

In this report, we specify our GT-based signaling game model, which should be further
integrated into the proposed agent system (agent libraries) and elaborated in D.5 “Security,
Privacy, and IPR/Data Protection Requirements Translated into Game-Theoretic Agent

Behaviour”.
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