Security, Privacy and IPR/Data
Protection Requirements translated into
Game-Theoretic Agent Behaviour

Project Acronym | loT4Industry

Document-id D.5

File name

Version FINAL document
Date Start: 01 April 2015

End: 31 September 2015

Author(s) Robert Mulrenin
Violeta Damjanovic-Behrendt

QA Process Georg Glintner

Table of Content

loT4Industry in a Nutshell
loT4Industry Task 5 Description
Abbreviations
1. Problem Statement
2. loT4Industry Agent-based Multilayer Architecture
2.1 External Agent Layer
2.2 Internal Agent Layer
2.3 Web of Things (WoT) Layer
2.4 Internet of Things (loT) Layer
3. loT4Industry Prototype as a Smart Factory Proof-of-Concept
3.1 “Internet of Things” Layer Components
3.2 “Web of Things” Layer Components
4. Agent- and Knowledge Technology-related Requirements in loT4Industry
5. loT4Industry Agent Architecture Overview
5.1. Monitoring Layer
5.2. Communication Layer
5.3. Business Layer
5.4. Core System Edge Layer and Near Sensor Edge Layer
6. Semantic Models and Terminologies in loT4Industry
6.1. Virtual Sensor Description (VSD) Model and Services
6.2. Observations Model and Services
6.2.1. Semantic annotation of monitoring component messages (Observations)
6.2.2. SenML JSON example
6.2.3. SenML XSD Schema
6.3. Contributing Internal Models (Location, Monitoring Network Systems, Threat)
6.3.1. Model describing physical location and monitoring network systems
6.3.2. Model describing systems of collaborating sensors and other monitoring layer
components
6.3.3. Model describing sensor settings corresponding to threat levels
6.4. Semantic Modeling in loT
6.4.1. Models supporting observations messaging
6.4.2. Models supporting sensor control
6.5. Contributing Terminologies
7. Services in loT4Industry
8. Conclusion and Future Work
References
Appendix A: Overview of Agent Technologies for loT
JIAC (Java-based Intelligent Agent Componentware)

micro JIAC
thingjs (thingjs-agent)
AKKA Agent
LogStash agents
Node-RED as Edge Agent Framework
Apache Camel
Appendix B: Overview of Rule Engines
Nools (Javascript, Node.js)
JBOSS Drools (Java)
Appendix C: Overview of Data Computation Frameworks

Apache Storm

Apache Spark

Apache Spark Streaming

Apache Flink

Apache Kafka and Apache Spark Integration Aspects
Appendix D: Overview of Message Bus Technology

MQTT

Apache Kafka

Apache Flume
zeroMQ / OMQ

Schedulers
Appendix E: Overview of Semantic Technologies for 0T
Sensor Ontologies
SensorML (Sensor Model Language)
Appendix F: Overview of Security Technologies for [oT
ENISA Threat Terminology
Shostack and Microsoft Threat Modeling Tool
SECURE (Semantics Empowered Rescue Environment)

loT4Industry in a Nutshell

loT4Industry is an exploratory project funded by the Austrian Research Promotion Agency, for
the period October 2014 — September 2015. It stands for “Secure, Privacy-preserving Agents for
the Industrial Internet”. The core research areas of loT4Industry relate to security, privacy and
IPR/data protection requirements, translated into game-theoretic agent behavior, which is
simulated in a demo factory floor environment, supporting a supply chain negotiation. A demo

factory floor is implemented within our loT-lab, which is located at Salzburg Research.

While it is still not clear which protocols and technologies will become mainstream for the
Industrial Internet, it has become clear that security and privacy will feature strongly in any risk
assessment concerning the adoption of practices using the Industrial Internet. Thus, in
loT4Industry, we focus on the use of policy-enacting, multi-agent systems that securely manage
machines and manufacturing cells, and we build a feasibility demonstrator based on open
source tools and firmware. In addition, loT4Industry helps us to prepare for internationally
recognized contributions to science and technology in the field of Industrial Internet, notably in
Horizon 2020.

loT4Industry Task 5 Description

(from the loT4Industry project proposal)

D5: Security, Privacy and IPR/ Data Protection Requirements translated into

Game-Theoretic Agent Bahaviour

Goals:

1. Technical Report specifying how industrial security requirements can be translated
into agent behaviour which is bounded by specific game-theoretic models/mechanisms
2. Journal paper on specifying industrial security requirements as agent behaviour using

concepts from game theory

Description of the content

At this stage, we will have the experimental setup, the full platform integration and we will
have an understanding what security requirements actors in the Industrial Internet are
likely to have. We will also have sufficient understanding of game-theoretic mechanisms
as applied to supply chain management. This puts us in a position where we can
translate the security requirements into formally specifiable agent behaviour that can be

enacted on the web-based loT / agent platform.

Method

Summary of concepts and methodology. Formal specification of agent behaviour.

Milestones, results and deliverables
06/2015: Technical Report published
09/2015: Journal paper on specifying industrial security requirements as agent behaviour

using concepts from game theory

Abbreviations

BDI Belief Desire Intention

EIP Enterprise Design Patterns (message systems, message transformation,
routing, message endpoints, etc.)

ESB Enterprise Service Bus
DSS Decision Support System
SSN Semantic Sensor Network Ontology, a means to model sensor descriptions,

deployment info and sensor observations.

1. Problem Statement

The scientific goals of the loT4Industry project can be formulated as follows:

e Can we conceptualise software agents that follow local privacy and security rules such
that they can negotiate alternative production schedules in response to dynamically
changing demand and supply situations?

e Can we formulate agents behaviour in line with the current state of the art in game
theory?

e Can we create a feasibility demonstrator for a multi-agent, cross-enterprise scenario
where the agents autonomously manage machines and manufacturing cells with which
they communicate via a mesh network of lower-level and higher-level sensors, attached
to the manufacturing machines?

In this report, we explores security, privacy and data protection requirements for loT4Industry
agents, which are described by using behavioral models based on signaling games, and
presented in D.3 “Specifying Game-Theoretic Behaviour for Agents in Industrial Supply Chain”.

Document Organization. After introducing the problem statement, Section 2 describes
high-level architecture of the loT4Industry agent-based multilayered system, in which we focus
on four layers: external agent layer, internal agent layer, Web of Things layer, and loT layer. In
Section 3, we discuss the implementation of the loT and Web of Things (WoT) layers, with a
focus on open source solutions. In Section 4, we continue the loT4Industry implementation by
adding external and internal agent layers on top of both loT and WoT layers. From Section 5 on,
we focus on designing our multi-agent architecture, which includes: (i) Monitoring layer, (ii)
Communication layer, (iii) Business layer, (iv) Core System Edge layer, and (v) Near Sensor
Edge layer. Section 6 discusses semantic models and terminologies with the potential to link to
the existing knowledge bases, and to exploit the advantages of LDP (Linked Data Platform). In
that sense, we discuss Virtual Sensor Description (VSD)-based models and services, internal
models describing physical location, monitoring network systems, sensor settings corresponding
to threat levels, sensor control, etc. Section 7 summarizes on services to be developed in
loT4Industry, and finally, in Section 8, some conclusion remarks and notes on future work are

emphasized.

2. loT4Industry Agent-based Multilayer Architecture

Our overall architectural vision of an agent-based multi-enterprise manufacturing environment in
the loT4Industry project, is motivated by the Industry 4.0 perspectives on Smart Factories,
exploiting both Cyber Physical Systems (CPSs) and the IoT. The architectural breakdown of
loT4Industry system is done into four layers, as depicted in Figure 1: external agent layer,
internal agent layer, Web of Things (WoT) layer, and loT layer. It is presumed that all
communication between components, especially between agents is secured (e.g. by

encryption), and that all entities are able to authenticate themselves (e.g. by exchange of

certificates).
External
Agent Enterprise A
Layer
Enterprise B
Internal
Agent
Layer
WaT
Layer

loT
Layer

Sensors Actuators

Figure 1: loT4Industry Architectural Layers

In the following, we discuss each of four layers of the loT4Industry architecture.

2.1 External Agent Layer
An external agent layer handles the enterprise-to-enterprise communication during the

execution of the production processes. External agents that communicate on this layer with the
outside world, follow interests of their own organization, which may result in conflicting interests
with their communication partner from the other organizations. While all agents have access to

internal knowledge base (either directly or via cooperating internal agents), the external agents

only get information related to their business interests, e.g. “What is the expected delivery time
and price for a specific product?” Agents inside the company therefore need internal knowledge,
such as the utilization of the production machines, costs of the raw material, additional costs,
schedules of maintenance plans, etc. in order to state their offers to external agents. In order to
maximize the profit and protect company business interests, external agents must hide internal
knowledge and may not even tell the full truth. As an example, factories may have privileged
customers, which always get priority and therefore buffers in the delivery times will be kept.
Hence, in loT4Industry, the external agent layer exploits game theoretic (GT) models specified

in D.3, “Specifying Game-Theoretic Behaviour for Agents in Industrial Supply Chain”.

2.2 Internal Agent Layer
The major difference to the previously discussed external agent layer is that in this layer all

agents are “trusted”. In other words, besides agent authentication, all the provided information is
expected to be true, in order to support the agents’ best knowledge. Although there may be
errors in the data itself, the agents do not deliberately retain or distort information. The
breakdown into multiple agents within a single company is done only to reduce the complexity
of single agents. For examples, each of the internal agents can be responsible for separate
entities such as one production cell inside a company, or for specific products. Therefore this

layer is optional and may be skipped in small scenarios.

2.3 Web of Things (WoT) Layer

This layer delivers high-level information for the agents, by accumulating the available
knowledge in a knowledge base. This includes data from sensors or records, as well as
corresponding metadata, but also other contextually required information, which can be
retrieved by ERP tools, Linked Open Data (LOD) repositories (e.g. semantic information on
abstract concepts) or external services (e.g. data of a specific region). For agents, the WoT
layer provides query services so that they can retrieve the status of the underlying production
cell, without accessing the full range of raw sensor data. For agents to control the actuators, the
WoT layer provides a control interface. Using this interface, agents can either queue orders, or
deliver new design models to the underlying production cell.

In case of security boundaries inside the company, this layer needs to be vertically split into

separate internal entities.

2.4 Internet of Things (IoT) Layer

Networked sensors and actuators constitute the loT layer. Sensors on the one hand feed the
knowledge base with their observations according to their configuration, continuously or
triggered by observed events. In addition they can be requested to deliver information on the
current status. The actuators on the other hand are able to perform specific activities along the
manufacturing process as requested through their control interface.

The implementation perspectives of both layers WoT and IoT are described in more detail in the

following section.

3. loT4Industry Prototype as a Smart Factory Proof-of-Concept

D.6 “Demo Implementation of Industrial IoT Factory Floor based on Arduino and Raspberry P
describes the /loT4Industry scenario, which is rather an extract from a real production
environment of a Smart Factory. Nevertheless, it gives us still information about the data to be
collected, processed and transferred into higher-level knowledge, which can be further used by
the agents for their interaction. In order to proof the feasibility of our approach, we firstly
implemented the loT and WoT layers based on existing technologies and components, giving
priority to open source solutions. In Section 4, we continue the loT4Industry implementation by

adding external and internal agent layers.

3.1 “Internet of Things” Layer Components
The main task of the loT layer is to interact with the physical world and provide connectivity to

the network for sensors and actuators. This means that the loT layer includes services, where
sensors with low energy consumption and low processing power can connect to. In addition, the
IoT layer needs to communicate sensor results and retrieve actuator commands from/to upper
level services such as the “Web of Things”, and other data consumers.

To proof the concept of our upstream data aggregation from the different types of sensors, we
firstly integrated the existing loT technologies and connected them as shown in Figure 2. In that
way, a great diversity of technologies covering this functionality is already available, and some
of them are published as open source. In our prototype implementation, we integrated a set of

open source hardware and software projects to demonstrate the interoperability between a

10

variety of sensor types and the higher layer services. In the next paragraphs we shortly describe

the sensor technologies available in our demo setup.

WaT +
Other Data Consumers
\T HTTP, RDF
or Other
MNode-RED

T File Tail

T HTTP / CoRP

D

T

Figure 2: Technologies used in the IoT layer

Let’s start with the temperature and light intensity sensors connected to a Texas Instruments
evaluation module, which is equipped with an IEEE 802.15.4 compliant CC2538
system-on-chip. This platform can run the open source Contiki or RIOT-OS operating systems,
which use 6LOWPAN for communication via a wireless sensor network. They also support the
Constrained Application Protocol (CoAP), as well as HTTP to directly talk to the loT service
layer. Furthermore, the same type of sensors have been connected via the open source Arduino
hardware platform, using an embedded 802.11 b/g wireless LAN module that provides
onboard-support of HTTP for connectivity.

Another sensor platform that is actively used in our setup is based on open source Raspberry Pi
computers. They are delivered with on board networking capabilities and can be WiFi-equipped
by USB-dongles. On this platform we connect USB-based sensor hardware, such as air quality
sensors from Velux and a camera.

Raspberry Pi is running a Debian-derived Linux system (Raspbian), which provides all required
communication protocols implemented out of the box. To show interoperability with
closed-source sensor platforms, we integrated a commercial sensor platform from a company

called LineMetrics, for the measurement of power consumption. Their solution communicates

11

via public 3G networks with their cloud-hosted sensor management and data visualization
web-services. Although proprietary solution, LineMetrics tool still provide access to the sensor
data via simple REST-APIs.

The common requirement for all sensors used in loT4Industry is that they must have a kind of IP
network connectivity (IPv4 or IPv6) to communicate via HTTP or CoAP with an |oT service. This
service can be implemented using open source software in various ways, e.g. a CoAP proxy
implementation like Californium, or a commonly used HTTP server like Apache2. A large
number of open source implementations for such services exist too. To simplify the prototype,
we have not created a higher level 10T sensor service on top of CoAP or HTTP, but we are
using information provided by the sensors directly from CoAP or HTTP request headers. Also
the communication back to the remote sensors is simplified. In case the server accepts the
reported values, it returns a “200 OK” (or “2.05 Content” in case of CoAP), otherwise an
indicative error code is returned.

Furthermore, the service collects information from the sensor, including its identity based on the
source IP address and an identifier provided by the sensor. The local identifier is used to
construct a globally unique URI required in the higher layers. In a real scenario, there may be
distrust on the authenticity of the provided information. In that case additional authentication and
security mechanisms can be implemented already on this level by adding (Datagram) Transport
Level Security (D)TLS.

In order to record the sensor values, we use the logging features of the standard Apache2
HTTP server to store sensor raw data with a timestamp and the provided sensor identity into a
local log file. To further pre-process the gathered information on the loT Layer, e.g. sensing for
predefined events, we connect a Node-RED server to the data logs. Node-RED is a tool for
wiring together hardware devices, APIs and online services, and is able to filter information
using e.g. regular expressions and further process the information in arbitrary forms — for
example, sending alarms via MQTT, remotely control devices or upload extracted data in RDF
triples according to the LDP principles to the WoT Layer (for more information on Node-RED,
see Appendix. A.1.). In order to have a scalable solution for hundreds to thousands of sensors,
the IoT layer can run multiple parallel entities; each of them provide the aggregated data to the
upper layer. It has to be noted that in our current prototype implementation, the return channel
towards the sensor, e.g. for reconfiguration or active value-request is not yet integrated, but will

be added based on the future requirements.

12

3.2 “Web of Things” Layer Components
The main task of the WoT layer is to unlock the underlying loT “data silos” and make their

information available using open standards. This layer integrates not only separate IoT
implementations as described in the previous section, but also additional information via internal
services available through an organization and external Web services. This requirement clearly
indicates that the use of technologies developed for Linked Data on the WWW could be a viable
solution to apply. Therefore, our WoT layer is implemented on top of the open source Linked
Data Platform (LDP) Server, which is available in Apache Marmotta (see:

http://marmotta.apache.org/). The LDP application delivers knowledge collected from the

sensors as Linked Data to the upper layer in loT4Industry architecture. Apache Marmotta LDP
backed by the SSN ontology, stores all information in its "kiwi" triple store, on a Postgres
database. As depicted in Figure 3, triplified information includes:

e Sensor metadata, e.g. location, reporting/measurement frequency, unit of measurement;

e Sensor configuration data;

e Sensor raw data;

e Node-RED flows;

e Linked Data cache (local cache for links into the Linked Open Data repositories).

«Euchangen\ /ﬂuerg»

LOP on clustered environment

[Apache Marmaotta)

VAN

il L =
Sensor Data Binary Data Legacy Data Meta Data

Figure 3: LDP data types and linking

13

http://marmotta.apache.org/

There are several advantages of using LDP. Data can be accessed more simply compared to a
“plain” triple store, plus there are documented constraints to provide an initial structure (e.g.
RDF vs. Non-RDF resource). Furthermore, the flexibility and advantages of Semantic Web
technologies are contained, and legacy data, relational documents and unstructured documents
can be coupled easily. Once data or sets of data are submitted to the LDP server, they will
become LDP Resources (LDPRs), which are specialized HTTP resources, accessible via an
URI. In addition, they can be accessed, modified, created or deleted using HTTP requests.
Finally, the concept of LDP containers makes it easier to locate existing resources, e.g. to find
resources which belong to the same container. In the context of WoT, containers will help to
easily access sensor information with the same type in different locations, or with different types

at the same location.

4. Agent- and Knowledge Technology-related Requirements in
loT4Industry

This section overviews technologies with the potential to implement the loT4/Industry agent
system. For more details, see Appendix A. One way to summarize the /loT4Industry
requirements is by using horizontal and vertical layers. Horizontal layers refer on technology
platforms that can scale to meet a range of system requirements, while vertical layers cover the
functionality requirements, e.g. the ability to capture sensor data, ensure efficient decision

making, etc. In that way, we consider the following technologies in loT4Industry:

Horizontal layers: Vertical layers:

e Decision Making Layer (DSS) e Messaging
o Multi-Agent System (MAS) o Near Sensor Message Brokers
o Game Theory models based o Distributed System Message

on signaling games Brokers

e Control and IoT Edge Agent Layer e Agent Configuration
o Agents, connectors, drivers e Sensor and Network Configuration

e Monitoring Layer o Sensor registry
o Sensors e Security
o Sensor networks

14

What functionalities does the loT4Industry infrastructure have?

The following provides a summary of technological suggestions for the agent implementation.

Multi Agent Systems (MAS) in loT4Industry need to support DSS components, rule engine and
scheduler, workflows, services.

DSS should utilize a Belief-Desire-Intention (BDI) paradigm, and support rule engine and
BPMN-based workflows. MAS should be implemented in JIAC (Java) and Node.js that can be
used to develop portable user interface applications that can run on literally any device, using
HTML5'". Edge Agents implements so called Near Sensor Agents, and provide message
handling from them to the core system. DSS supports both MAS BDI component and Near
Sensor Agents, and provide transformation of messages to common message (via threat lookup
and mapping services) and notification mechanisms (communication over message bus with
agents and other system components). Rule engine should support non-agent processes either
via Node.js or JBOSS drools. It might have scheduler support (JBOSS Drools). Scheduler, or
IoT based timer, is required to schedule processes, e.g., to pull data from sensor network.
Node.js via Node-RED already includes schedule to pull data from services. Messaging should
be provided: (i) between agents or processes, (ii) from sensors to Near Sensor MQTT broker,
(iii) to a main message broker serving system applications. MQTT brokers are suitable and
required, especially if sensor networks become offline. Various ways of messaging could be
implemented:

e Message routing, supported by Message brokers (Apache Kafka, MQTT brokers:
Mosca or Mosquitto; connectors to Kakka to Node.js) and Broker clients (Node-jst
(JavaScript Template));

e Message channeling via PubSub channel;

e Message transformation/ translation using semantic annotation (e.g., transformation
of unstructured input to output format based on desired ontology and vocabularies),
content enrichment (e.g., resolving the semantic location). Some examples of tools to

support EIP functionalities are Node-RED, Apache Camel, etc.

Sensor Registry and services need to provide sensor configuration based on both core and

domain ontologies. Sensor services could be sensor configuration service, sensor observation

" source: http://solidcon.com/internet-of-things-2015/public/schedule/detail/40797

15

http://solidcon.com/internet-of-things-2015/public/schedule/detail/40797

service, sensor planning service, notification service, etc. Models for sensor descriptions and
observations could be based on SSN (Semantic Sensor Network). We might also need data
transformation library to transform incoming messages from sensors to a desired common
output format, and threat terminology to translate log message info or device messages to
both threat and common terminology. One example of terminology to be used is LOV4loT

terminology (see: https://github.com/LOV4IoT).

5. loT4Industry Agent Architecture Overview

Figure 4 presents teh loT4Industry agent architecture, distinguishing between a core system
and associated “near sensor” networks. The core system supports centralized and distributed
messaging for applications and enables monitoring, security and decision support. The “near
sensor” supports Near Sensor Edge agents and device connectors that manage collection
(schedule, filter) and semantically transform observations, and forward them to the core system.
Alternatively, the core system could transform observations depending on whether that is
described in the sensor description. Sensors must be described using a VSD (Virtual Sensor
Description), which is based on SensorML. Each sensor requires a unique identifier,
deployment info, location, and optionally, topic based control settings.

Figure 4 shows the following layers of the loT4Industry architecture: (i) monitoring layer, (ii)
communication layer, (iii) business layer, (iv) application layer, (v) near sensor edge layer, (vi)

system edge layer, (vii) service interface layer, and (viii) event layer.

5.1. Monitoring Layer
Monitoring layer connects the near sensor networks with the core system via Message Broker

Bridges, which provides subscribe/publish features for the near sensor network. The Near
Sensor Edge Layer should include connectors to filter messages or schedule polling, and
transform the sensor observations to SensorML format. However, the core system layer might

also handle transformations according to the VSD description.

5.2. Communication Layer
Communication is facilitated by the core message broker and near sensor message brokers.

Figure 5 gives an overview of the component and messaging. In Figure 6, the message brokers

of core and near sensor networks utilize a Message Broker Bridge to enable the

16

subscribe/publish messaging between Message Brokers (e.g. to connect a Kafka message

broker to MQTT). Agents also communicate over the core message broker.

5.3. Business Layer
The loT4Industry infrastructure includes a variety of components: schedule engine, rule engine,

workflow engine, mail, analytics and big data components (streaming, non-streaming, Map
Reduce for processing and generating large data sets) (Figure 5). Some agent frameworks
provide components that can be reused as needed by the core system, such as the scheduling
engine, rule engine and workflow engine.

DSS and control: Regarding control topics, the VSD for a smart sensor can match topics to
defined sensor settings in the VSD. When the DSS controller issues topics, the matching
settings are sent to the sensor connector, which then acts on the particular VSD sensor
settings.

Agents and control: The BDI agent framework supports DSS and sensor control
functionalities. The agent framework includes components for scheduling, workflow, rules and
messaging. Agents following particular workflows might post process observations using
analytics components (computational server) to further transform observations, provide
aggregation or summaries, or metrics. Agents might require post processing analysis before
decisions can be made. Sending the results to the message bus would enable agents or other
processes to store semantic views (Figure 6) or store in the big data repository and make the
results available to waiting agents. Smart sensors might be controlled by the agent based DSS.
In the monitoring layer, the sensor connector would subscribe to control topics posted by the
core system to the message broker. The control messages contain control fragments based on
SensorML.

Security control: Control settings of any virtual sensor can be described in the VSD.

5.4. Core System Edge Layer and Near Sensor Edge Layer

The edge agents are concerned with connecting the virtual sensors of the monitoring layer and
facilitating the collection of observations from virtual sensors (sensing) or the control of virtual
sensors (actuators). The edge agents can exist in either the core system or the near sensor
networks. For example, in a near sensor network, the Node-RED tool creates connectors that
are run as edge agents to connect to sensors whereby observations are either polled by the
connector or pushed by the sensor to the connector. Another lightweight agent framework e.g.

Node.js thingjs-agent could provide more BDI-like agent infrastructure.

17

Security

Application
layer

Monitoring:
_ SIEM loT Connector Tools
Security Information & (Node-Red)
Event Management

Monitoring:
loT Multi-Agent
System

Service
Interface Layer

Virtual Sensor Services

« YSD Registry Service

e Sensor Planning Service

(discovery of location, systems, capabilities, control settings by topic)
s Observations & Analytics Services

e Terminology and 118n

Business Layer

 DSS

Scheduler, Workflow, Rule engine (incl. In Agent framework of DSS)
* Analytics

« Monitoring layer (sensor) Control

Event Layer

e Event Services
* Notification/Alerts
* Generic Events Access or Dissemination

System
Edge Layer

System Edge Services (and Agents)

» Data collection
Message Transformation, Translation, Semantic
Annotation

» Data Access Services

Monitoring Layer

€
_QC
Q|
D8
218
[
S5
O | &
<\ E
= || O
510
=
W
[h]
[®)]
o
0
[
< || 2
o1 8
=
=l 5
(@)

Near Sensor
Edge layer

Near Sensor Communication Bridges
* Near sensor MQTT based message brokers receive observations
from sensor or commands from core system

Device Connectors (clients)
e Use Communication Services
Nearby MQTT message broker (publish-subscribe channel}
or directly use Core services
« Data collection Tool: Observation filtering/scheduling,
transformation (extended SenML), and workflows

. e.g. Node-Red tool to create connectors
» Control Tool: Control messages from Core system to sensors
. SensorML based control settings

e VSD publishing tool: publish VSD to core

Figure 4: Architecture Overview

DSS
& Control

VSD Virtual
Sensor
Descriptions

Real Time
Analytics

Stream
Processing

Message
Broker
Bridge

VSD
Virtual Sensor Descriptors

Message
Broker

Near Sensor
Message
Broker(s)

Database
(RDBMS, NoSQL)

Semantic Views

Figure 5: Architectural overview of important components

Near Sensor Net Edge e.g. Raspberry with Sensor net

Connector nade
(MQTT python, M QTT
Node-Red | L
Nearby]| Flow.Nodes) g ; Message
— Ariias e Publish topic Broker
I Ethernet shield (telemetry)

Subscribe to topic

[
Kafka - MQTT Bridge

Publish to Kafka Topic

Distributed Message
Zookeeper [— | Broker
(e.g. Kafka)
Distributed
configuration
(devices, apps, |_‘
Kafka) _ F

Configuration Application
Sensors, rules™

Messaging (also
command topics)

Figure 6: Bridging message brokers of the core system with near-sensor networks

20

6. Semantic Models and Terminologies in loT4Industry

Semantic models and terminologies support the description of sensor and sensor-based
systems, and the semantic annotation and transformation of observations emitted by the
monitoring layer. In this section, we have a closer look at the following semantic models,
terminologies and services in loT4Industry:.
e The VSD (Virtual Sensor Description) model and services: It is expected that sensors or
other monitoring layer components comply to a VSD;
e The Observations (observation events) model and services:

o the edge agents need to transform and semantically annotate incoming
observations or notifications. The initial model should be updated according to
the needs of the DSS and database services;

o DSS and control layer need to support sensor planning, in regard to threat
mitigation approaches.

e Contributing internal models (location, monitoring network systems, threat related);
e Terminologies supporting models and services, including DSS (threats);
e Semantic modeling;

e Threat Modeling.

6.1. Virtual Sensor Description (VSD) Model and Services
A virtual sensor is anything that can report observations coming from other sensors, persons,

objects, or a system of sensors. Consequently, any monitoring layer component can be
described and sensorized by humans (security guards) or logging components, etc. The VSD
model also supports the DSS services, as well as the edge agents to transform observation
messages (content enrichment/ code translation from a VSD).

There are strong interrelationships among the standards, e.g. the Semantic Sensor Network
Ontology (SSN?) ontology was influenced by the SensorML® standard. Unfortunately, the SSN
does not describe important features that were considered by SensorML, such as sensor control
topics and settings, observation data processing and data access. Hence, the VSD descriptions

in loT4Industry are based on SensorML and SSN using description files as reference from loT

2 SSN Semantic Sensor Network Ontology http://www.w3.0rg/2005/Incubator/ssn/ssnx/ssn
¥ OGC SensorML The Open GeoSpatial Consortium (OGC) Sensor Model Language (SensorML)

21

http://portal.opengeospatial.org/files/?artifact_id=21273

projects such as GSN*, OpenlOT with X-GSN° and M3 framework® (the examples are provided
in Appendix B). The implementation of VSD in loT4Industry is based on inputs from DSS and
specifications of controlling layer components, supporting services such as:

e Discovery of sensor, sensor systems, and sensor processes;

e Discovery of sensor observations (store queries);

e Sensor location and system services;

e Subscription to sensor observations or alerts;

e Sensor planning based on capabilities (measurement and control) and deployment info
supporting DSS mitigation approaches in coordination with the control layer.

o DSS/ Control layer services for task interoperability.
The following lists several VSD features suggested by our implementation team:

e GUID (Global Unique IDentifier) should be mapped to a unique security token (needs to
be separated from the description);

e Resource type description needs to be used;

e Monitoring layer category (e.g., logs, ambient sensors, smart sensors, etc.) to be
implemented;

e Processing class;

e Observation data access info, e.g. to build queries;

e Deployment information including the following: location (geo and place), part of sensor
system, e.g., electric substation A-100, service related info (life, maintenance),
responsible persons and contact info (DSS mitigation task asks persons to check this
info), activity status (e.g. undeployed sensor), etc.

e Measurements, entity detection, notification, logging;

e Control features: Control taking features and mapping to common codes

e Classification for resource discovery (sensor planning service, lookup)

o Classification supporting communication message broker channel/ edge agent
handling
o Classification to support lookup services

e Control descriptions relating to control topics, e.g. threat levels

4 GSN sensor descriptions- https://github.com/LSIR/gsn/blob/master/virtual-sensors/samples/
5 OpenloT with X-GSN sensor descriptions https://github.com/OpenlotOrg/openiot/wiki/X-GSN-Use
6 M3 Framework http://semantic-web-of-things.appspot.com/?p=architecture

22

https://github.com/LSIR/gsn/blob/master/virtual-sensors/samples/netcam.xml
https://github.com/OpenIotOrg/openiot/wiki/X-GSN-Use

o Support DSS, control layer and edge agent. Example: For each threat level (high,
low, normal), what are sensor settings, access rates etc.?
e Notification code mappings: proprietary codes to common codes, e.g. system logs,
sensor events;
e Implementation issues:
o Mapping to support transformation of proprietary terminologies
o Threat mitigation: if sensor needs to be checked for malfunction? how often?
e Particular Field element values (sensor classification, control topics, virtual sensor
resource types, system ID, location ID) should be based on standard terminologies such
as (LOV4IoT) Open Link vocabularies for loT and domain model terminologies, as

needed.

6.2. Observations Model and Services

6.2.1. Semantic annotation of monitoring component messages (Observations)
Observations will be semantically annotated using an extended version of Sensor Markup

Language (SenML)’, enriched with the matching features from the component’s VDE, and
translated via VDE bindings to common domain terminologies. In Table 1, the extended version
of the SenML notation is described, and SenML JSON example is presented. SenML was
chosen because it is a lightweight model that can be easily handled by upstream processes and
can be easily extended. It is available as JSON or XML format. Alternatively it can be
transformed to RDF or the SSN ontology.

The “zone” element is an extension used to communicate additional semantic annotations from
the edge agents to upstream processes including message broker. Additional annotations can
include VSD metadata and message channel topic(s) for message subscribers (other edge
agents, logging edge agent, DSS or database services). The “zone” element was used in the
M3 Framework project to communicate the domain name of the sensor.

In the following, we give several implementation issues to be considered: The DSS and other
subscribers should propose additional elements for both the “zone” and “e” elements. Sensor
clients might send notification to inform the incoming edge agents about the monitoring layer

components (e.g. logging components, ambient sensors, smart sensors). Otherwise an edge

7 SenML http://tools.ietf.org/html/draft-jennings-senml-10
23

agent might insert it from the VSD description to support message subscribers (other edge

agents, or DSS and database services.)

Table 1: Extended SenML Observations model

Extended JSON Types | Notes

SenML

Zone with | (Note: This is NOT part of the SenML standard)

parameters Zone wraps the entire message body and enables the edge agents to

semantically annotate the observations as required by the DSS and
database services. Additional metadata can be included such as the VSD
description of the sensor/monitoring component, e.g. location info, sensor
type, sensor system to support database queries. It can support edge
agent messaging the message broker.

Name of zone

name Name of zone is a means to partition the
messages as needed, especially if there are
subsystems in the network.

Topic

topic It uses topic terminology and code space as
prefix or URI. If there are more than one topic,
it uses comma delimited data. Topics are
relevant for message subscribers and can
indicate what should be done next on the
message according to the potential
subscribers (DSS, database, other edge
agents and services). An upstream edge
agent, or subscriber, might further update or
remove topics as needed.

Location

location It uses terminology and code space as prefix
or URI. The location corresponds to the
location place terminology, which is defined
for this domain. Note that if a sensor is
moved, sensor location might change in the
future. Therefore the current location should
be annotated. The GPS coordinates might be
included in alternative fields, if available. A
VSD service will provide location and system
lookup features.

Monitoring Layer

cat_mon DSS or edge agents need to know the

24

Category

category of the monitoring layer component.

Security token stoken Only if the security mechanism requires to

record a security token in the messages

Date and time dt recd Date and time of the observation when it was

when the received by the edge agent. It is possible that

observation was the observation was performed much earlier -

received due to outage or reason for late reporting by
sensor. This is something that the DSS should
know about in order to update the Bayesian or
PCA models.

History history A set of parameters to indicate any progress
(dt_mod, in a workflow performed by multiple processes
modby, step...) (date time modified, modified by, step)

SenML Types | Notes

Elements

Base Name bn URI/ Unique Sensor Identifier is unique to the

UUID | sensor network. An additional code space can
be applied to make it more globally unique
using the “cs” element. VSD descriptor of
sensor ID, registered with a security token.

Sensor network cs URI (Note: This is NOT part of the SenML

code space or standard) Code space or namespace of the

namespace sensor can be used to avoid sensor ID

collisions in a large network. This might be
annotated by using “pr” element for prefix.

Base Time bt dateTi | Default Base date and time of observation,

me unless it is provided as an observation
parameter.

Base Units bu int Default base units of observations, unless it is

provided as an observation parameter.

Version ver int Version of the sensor observation. Default

value is “1”.
Measurementor | e Collec | The element “e” is a set of elements.
Parameters tion However, only one value is possible (string,

25

integer, float, Boolean).

Name n URI Use terminology and code space as prefix or
URI. The name of the measurement can be
used with namespace, e.g. aaa:temperature,
aaa:salinity

Units u string | The convention should include the units
terminology namespace, e.g UCUM:voltage,
or a local project namespace.

Value v float Float value

String Value sV string | String value

Boolean Value bv Boole | Boolean value

an

Value Sum S float Value sum value

Resource Typed | rv (Note: This is NOT part of the SenML

Value standard) Resource type value uses code
space prefix to reference to a terminology.

Time t dateTi | Agreed upon date time format; observation

me time.
Update Time ut dateTi | Expected next observation time (optional).
me

Resource Type rt URI It uses topic terminology and code space as
(Type | prefix or URI, e.g., type of sensor, monitoring
of layer component)
observ [The Resource type namespace should also
ation) [be included.

6.2.2. SenML JSON example

Here is an example of observation model in SenML JSON. Element “cs” is the sensor

namespace; “zone” provides additional semantic annotations for other message subscribers,

e.g. edge agents, loggers, DSS, database; “bn” gives a base name (URI), etc.

{“zone”:

26

name="scizone:AAAA"

location="AA-11-22"

topics:”scitopic:XYZ”,

cat mon:””,

dt recd:"””,

history:{ },

stoken:”senOl@test.com”

otherAttributesFromVSDRequiredByDSS=""

{re": [
{"n": "aaa:temperature", t="1374069830362","u": "UCUM:Cel",
"v":22}%,
{"n": "aaa:salinity", t="1374069830362", "v":0.031}
I
"bn":"http://myiot/sensors#comboTempSalinitySensor0001/"
"rt":"bbb:EnvNode"

"cs":"http://myiot/sensors"

6.2.3. SenML XSD Schema
The SenML XSD schema is also provided to better understand the observation model

requirements. The “zone” element is not shown and should be updated for implementation

needs and requirements from other upstream components, e.g. DSS and database services.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
elementFormDefault="qualified"
targetNamespace="urn:ietf:params:xml:ns:senml"
xmlns:nsl="urn:ietf:params:xml:ns:senml">
<xs:element name="e">
<xs:complexType>
<xs:attribute name="n" type="xs:string" minOccurs="0"/>
<xs:attribute name="u" type="xs:string" minOccurs="0"/>
<xs:attribute name="v" type="xs:float" minOccurs="0"/>
<xs:attribute name="sv" type="xs:string" minOccurs="0"/>
<!-- non standard element, to handle codespace or namespace of sensor -
<xs:attribute name="rv" type="xs:string" minOccurs="0"/>
<xs:attribute name="bv" type="xs:boolean" minOccurs="0"/>
<xs:attribute name="s" type="xs:decimal" minOccurs="0"/>
<xs:attribute name="t" type="xs:int" minOccurs="0"/>
<xs:attribute name="ut" type="xs:int" minOccurs="0"/>
</xs:complexType>
</xs:element>
<xs:element name="senml">
<xs:complexType>
<xs:sequence>

<xs:element minOccurs="0" maxOccurs="unbounded" ref="nsl:e"/>

27

http://myiot/sensors

</xs:sequence>
<xs:attribute name="bn" type="xs:string"/>
<xs:attribute name="bt" type="xs:int"/>

<xs:attribute name="bu" type="xs:string"/>

<xs:attribute name="ver" type="xs:int"/>

<!-- non standard element, to handle codespace or namespace of sensor -
<xs:attribute name="cs" type="xs:string"/>
</xs:complexType>
</xs:element>
</xs:schema>

6.3. Contributing Internal Models (Location, Monitoring Network Systems,
Threat)
Here are some contributing internal models to support the VSD services, DSS and controlling

layers.

6.3.1. Model describing physical location and monitoring network systems
The VSD model will support the relationships between virtual sensors and locations. The

following models shown in Table 2 (The Location Model) and Table 3 (The Virtual Sensor
System Organization Model) can be further improved depending on the requirements of the

DSS and controlling layers.

Table 2: Location Model

uulD Unique ID

Local ID Using local identifier (query on this) Unique for site

Label Human readable label

[18n Internationalization code

locationType Type of location; it requires location type terminology, e.g. electrical

substation, room...

partOfLocation Part of a parent location, refers UUID of linking site.

tags Tags to find one or more locations.
Tags might not be unique to the location.

geolocation Geo location

28

Table 3: Virtual Sensor System Organization Model

uuiD Unique ID

Local ID Using local identifier (query on this)

Label Human readable label

[18n Internationalization code

systemType Type of system; it requires system type terminology and refers to

monitoring layer components. It could be a sensorized human system.

partOfSystem Part of a system, that refers to UUID of linking site
location UUID or local ID if unique
tags Tags to find one or more systems.

Tags might not be unique to the system.

features Features that DSS requires to support queries

These models will support the VSD services for the location and system discovery services. The
goal is to provide the DSS the ability to determine sensors that are part of locations or systems,
and vice versa. Domain vocabularies, such as site’s place, local identifier and names should
include a local namespace prefix. Note that human operators will need to view human readable
information in order to act on any alert or log message. A supporting location lookup service

should support the DSS service and include a part of relationship to link locations.

6.3.2. Model describing systems of collaborating sensors and other monitoring

layer components
The monitoring layer consists of virtual sensors, which are described by VSD. The VSD

specifies the system and supports system related queries in the VSD services. One or more
sensor systems, as a collection of collaboration sensors, should be also assigned to location
e.g. a particular electrical sub-station. Additionally, logging related components of the monitoring

layer can be described as part of a system.

29

6.3.3. Model describing sensor settings corresponding to threat levels
This model describes threat levels and threat types, using SenML.

6.4. Semantic Modeling in loT

6.4.1. Models supporting observations messaging
These models provide a common treatment of observation messages from the monitoring layer.

The first message transformation can include content enrichment, semantic annotation, code
translations to common system codes, e.g. monitoring component events from log messages
(error, alerts, etc.), smart camera (human, gun, etc.) The role of Incoming Observation Edge
Agent is to collect observations that can be further sub-typed depending on the monitoring layer
component, e.g. log component versus smart camera. Semantic partitioning of responsible edge
agents can be based on the message channel topic of the incoming message and the
subscribing observation edge agent. In general, the data is collected and transformed to a
common semantic model, then published again to a message broker and received by other
subscribers, other edge agents, DSS processes or database subscribers.

Incoming observations can be measured or even transformed into notifications (logs, smart
cameras reporting Entity Detection Objects (EDO); location information and sensor capabilities,
etc.) Furthermore, the common terminologies and mappings (bindings) to proprietary
observation content need to be defined, e.g. log file notifications, control topics and settings,
measurement units, EDO (such as human, gun, or fire, etc.). The transformation of incoming
messages includes the translation of proprietary codes to common system codes; again these
bindings might be defined in the VSD for the particular sensor — this pertains especially to the
smart sensors that can be controlled, or utilize proprietary notification codes or entity detection
codes. Note that if the DSS layer determines that there is a threat of fire, therefore, the EDO
term is reused to report alerts to human operators, likewise, in case of human threats, the EDO
for human or gun is reported. Consequently, EDOs are possible threat attributes or threats
themselves.

Table 4 presents basic requirements and implementation issues regarding incoming

observations from the monitoring layer.

Table 4: Incoming observations sent from the monitoring layer to the edge agents

Expected:

30

UUID (Unique ID of a sensor) to be used for the IBE (Identity by Encryption)

Unique (IBE) security token to be used

Topic or category of component layer category to facilitate the edge agents

Sensor location to be verified against the VSD

Expected next observation time (optional)

Validation:

Are UUID and security token the same?

UUID should have corresponding VSD record in registry;
Content e.g. measurement, should be according to the VSD

Malformed or invalid observation message content;
Some rules required to determine if sensor is malfunctioning

6.4.2. Models supporting sensor control

The VSD model, incorporating SenML elements could support sensor control by the association

of control topics to sensor settings. A sensor client (connector) is required to interpret these

commands. The VSD model can provide task capabilities and address interoperability aspects.

Models supporting the decision and control layer need to address threat levels or threat types.

In addition, the controlling layer can use the VSD description for sensor tasks related to control

topics. Setting modes can be associated with control topics, e.g. settings relevant to one or

more threat levels. Control settings are assigned to a control topic (threat level) as illustrated in

the following example.

<sml:modes>
<sml:ModeChoice id=" THREAT LEVEL MODE">
<sml :mode>
<sml:Mode gml:id=" scscontrol:lowThreat">

<gml:description> Setting when nothing has been detected

</gml:description>
<gml:name>Low Threat Mode</gml:name>
<sml:configuration>
<sml:Settings>
<sml:setValue

ref="parameters/settings/samplingRate">0.1</sml:setValue>
<sml:setValue ref="parameters/settings/gain">1.0</sml

</sml:Settings>

:setValue>

31

</sml:configuration>
</sml:Mode>
</sml:mode>
<sml:mode>
<sml:Mode gml:id="scscontol:highThreat">
<gml:description> Setting when something has been detected
</gml:description>
<gml:name>High Threat Mode</gml:name>
<sml:configuration>
<sml:Settings>
<sml:setValue
ref="parameters/settings/samplingRate">10.0</sml:setValue>
<sml:setValue ref="parameters/settings/gain">2.5</sml:setValue>
</sml:Settings>
</sml:configuration>
</sml:Mode>
</sml:mode>
</sml:ModeChoice>
</sml:modes>

Figure 7 illustrates the VSD control aspects, which are possible VSD control topics, such as:
threat level topics (e.g. threat modes of sensors), threat types (an outage, malfunction, fire, etc.,
diagnostic checks (perform alive check). The VSD Threat Mode Description describes threat
modes and associates each threat level to tasks that should be undertaken. It sends VSD tasks
descriptions to the Control Layer, which together with the Decision Support Layer, sends sensor
settings messages to the near sensor message busses and to the sensor client. Sensor client
interprets the messages received and, based on that, performs the tasks.

The following is an example of sensor control using VSD control topics. The DSS mitigation
strategies are based on a sensor control terminology from the Control Layer. VSD services
such as sensor planning service, are required to determine capabilities of sensor(s) for
performing specific tasks of the sensors (for example, to move camera), or determine which
sensors collaborate in a sensor system in order to perform threat assessments.

Utilizing on the concept of fan-out messages, we can explain the following situation: the Control
System sends commands, based on the sensor control terminology, into the Message Broker
(topics) and Control Layer components (smart sensor driver/client), receive messages that are
subscribed to fan-out of commands. For example, Microsoft Azure 10T® describes the use of
fan-out messages by IoT sensors, as shown in Figure 8. Possibly, a Near Sensor Message
Broker, e.g. lighter weight MQTT Message Broker has a bridge to a Central Message Broker

Server.

8 Microsoft Azure Fan Out messages https://msdn.microsoft.com/en-us/magazine/jj133819.aspx

32

https://msdn.microsoft.com/en-us/magazine/jj133819.aspx

Control topics as associated with VSD sensor settings that are interpreted and executed by
sensor clients.

Possible VSD control topics:

+ Threat level (threat modes of sensor) Need a normal level !!

+ Threat type (Is there an outage, malfunction, fire?)

+ Diagnostic checks (Perform alive check)

How might sensor settings be associated with a
threats?

Decision Support
Layer

Example: Topics associated with sensor settings in VSD

+ jotcontrol:lowthreat — normal settings

Rals Thireat Lovel oF Lawee e + iotcontrol:highthreat — high threat settings

Issue control/threat topic
to control layer and other subscribers
e.g. loggers, etc.

Va
WSD
V5D Services ;
W I
Control layer |« (Capabilities, El::crispiir;m
VSD Task description Threat modes)
for threat level or
other topic
Send sensor sefting VSD Threat mode description
messages to near Describe threat modes and associate
59"'5%:‘2;9555399 each threat level to task(s) that should be
T undertaken.
Sensor client
Client interprets
VSD settings
Tnterpret and perform
settings on larget
sensors

Wait for new setlings
e.g. change in threat
level (normal, elc)

Figure 7: VSD control topics

33

ST
AR

Control System

<« (T},

Figure 8: The Control System sends commands to the Message Broker (topics), and loT
devices receive messages for fan-out commands to which they have been subscribed (source:

https://msdn.microsoft.com/en-us/magazine/jj133819.aspx)

Sensor control topics will be forwarded by Outgoing Edge Agents to the Message Bus and
onward to a Near Sensor Message Bus for retrieval by sensor clients. Message body contains
control setting information about the sensor from the VSD. Lastly, the SSN ontology does not
model sensor control (tasking) features. Oracle API, Wolfram sensor framework, or

SWE/SensorML/ support control of sensors.

6.5. Contributing Terminologies

Monitoring Layer components might use proprietary terminologies. To support service queries
and relationships among components, measurement units, etc., the VSD requires standard or
domain terminologies. Edge agents transform incoming messages such as: ftranslating
proprietary information from incoming notifications and observations, inserting unit codes.
Terminologies are used not only to support communication between components, but also to
communicate information to human operators; therefore human intelligible labels are required.
Some resources are listed, such as the Linked Open Vocabularies for loT (LOV4I0T). However,
sensor providers should indicate their preferred standard terminologies and from there

consensus can be achieved during implementation.

34

Table 5 lists terminology requirements and suggestions for further discussion on their use in

loT4Industry.

Table 5: Purpose and suggestions on possibly contributing terminologies in loT4Industry

Terminology

Purpose and suggestions

Entity Detection Objects
(EDO) Terminology

Purpose: Entity detection is performed by particular smart
sensors that emit an event describing the detected entity.
Proprietary terminologies likely describe an entity and need to
be translated to a common standard terminology. The DSS
might create rules based on threat attributes that are also
EDOs. Some attributes can be used as threats attributes (TDA).

Example: A smart sensor might detect a dog, human, gun, or
fire, certain objects or even threat attributes, depending on
intelligence of monitoring component.

Suggestion: It can be extended towards LOV4IOT (Linked
Open Vocabularies for 10T):
http://sensormeasurement.appspot.com/documentation/Nomen
clatureSensorData.pdf
http://sensormeasurement.appspot.com/?p=ontologies

Sensor Control Topic
terminology

Purpose: DSS and Control Layer require common control
terminology. Outgoing Edge Agents need mapping to sensor
proprietary control terminology or API. Possibly Message
Broker can be used to provide communication between Edge
Agents and Sensor Clients.

Example: A means to communicate between components and
also with human operators

Suggestions: SensorML resources, Wolfram or Oracle API.
Semantic Sensor Network ontology (SSN) does not yet model
sensor control. Next step is to identify what tasks sensors can
do and derive simple task terminology.

Units of Measure

UCUM (Unified Code for Units of Measure)
http://unitsofmeasure.org/trac/

LOV4loT

35

http://sensormeasurement.appspot.com/documentation/NomenclatureSensorData.pdf
http://sensormeasurement.appspot.com/documentation/NomenclatureSensorData.pdf
http://unitsofmeasure.org/trac/

http://sensormeasurement.appspot.com/documentation/Nomen
clatureSensorData.pdf
http://sensormeasurement.appspot.com/?p=ontologies

BIPM
http://www.bipm.org/en/measurement-units/

Cuu
http://physics.nist.gov/cuu/Units/index.html

Location vocabulary and
Sensor system
terminologies

Purpose: A physical site map should be constructed, and place
names identified uniquely. Likewise a Logical Sensor System
Vocabulary should be created, with unique identifiers for each
sensor system. A supporting location lookup service should
support the DSS service and include a part of relationship to
link locations.

Example: A local namespace should be prefixed when using a
place identifier.

Suggestions: Requires supporting location type and system
type terminologies

Resource Types

Sensor type: SensorML, GSN and LOV4loT
Location type: local terminology
System type: local terminology

Monitoring layer
Notification terminology

Support translation of monitoring layer notifications from
particular components by Edge Agents
Log components messages

System Notification and
Task terminology

A means to communicate between components and also with
human operators.

Threat Detection Attributes
(TDA) terminology

This has relevance for the DSS for codifying the threat rules
and also understanding attributes linked to a threat.

What attributes might imply a threat? These might be used as
part of any DSS rules. For example, which EDOs might be
considered threats?

Reuse EDO identifiers (using namespace) as necessary. Also,
items from the Threat Landscape Taxonomy might be relevant.

36

http://sensormeasurement.appspot.com/?p=ontologies
http://www.bipm.org/en/measurement-units/
http://physics.nist.gov/cuu/Units/index.html

Threat Landscape
Taxonomy

See Threat modeling from Appendix C

7. Services in loT4Industry

In the following, we lists possible VSD services supporting both sensor system components
(Table 6) and Edge Agents (Table 7).

Table 6: VSD Services supporting sensor systems components

VSD Registry Service

Supports registration of virtual sensors and systems.
Add, update VSDs (no delete, only un-deploy sensor).

Sensor Planning
Service

Supports:
- Sensor discovery (uses system and location discovery
services)
- Deployment and activity status (deactivated sensor)
- System discovery (collection of components/sensors)
- Location discovery service
- Site and location discovery
- Other activities of Edge Agents, Control layer, DSS services

System Discovery
and Management

Find systems and their sensors, or vice versa.
Find systems and children or parent corresponding to a sensor.
Find sibling sensors in a system or parent system.

Services should utilize both location and system to provide the DSS
with desired information as described in the VSD section. A VSD
service should be provided to lookup parent system of a sensor or
children or siblings as well as sensors associated with that query.

Also, based on location, find systems and sensors:
e Based on location, find sensors (option: include child locations)
e Find systems or sensors based on a location

Location Discovery
and Management

Find locations and sensors associated with locations and child
locations.

Find sibling sensors of a location.

Database service or VSD service (TBD) can lookup:

e Location info

e Sub-locations of location

37

Parent location of a location

Table 7: VSD Services supporting Edge Agents

Sensor Planning
Service

Find sensor descriptions and capabilities by sensor ID,
deployment info, e.g. location, sensor system, control topic and
settings etc. Who to contact in case of possible threat e.g.
OUTAGE or MALFUNCTION threat.

Get sensor or sensor network capabilities about measurements,
control info (e.g. sensor tasks and mapping from proprietary
actions to system control topics and settings are in VSD
configuration), deployment and responsibility info.

Location and system discovery

Find sensors of systems or locations

Transformation
Support Services

The VSD services should support the access to the VSD for
purposes of content enrichment, including calculations, code
translation (sensor events, etc.), and semantic annotation.
Transform proprietary formatted and coded observations to a
target standard model and format such as SenML in JSON or
XML.

Alternative models are possible.

Semantic Annotation
Service

Annotation Agent handling transformation of incoming messages to a
particular target output model. The SenML standard provides a
lightweight model for example, instead of Semantic Sensor Network
(SSN).

38

8. Conclusion and Future Work
loT4Industry agent-based multilayer architecture has been proposed as a scalable foundation

for industrial loT/WoT applications. The usage of established protocols and ontologies allows for
integration into existing networks or plants without raising the need for new (expensive)
hardware. At the same time, the distribution on numerous agents enables the usage of
inexpensive replaceable endpoints. Due to the focus on existing open source solutions, the

components are reliable and can easily be integrated, exchanged or adjusted.

Nevertheless, closed source components will have to offer interfaces for extracting data and the
loT community needs to make data publically available and link it to the existing knowledge to
create better-connected LD containers in order to exploit the advantages of Linked Data

Platform.

Furthermore, we have to regard notable challenges related to security, trust and privacy in order
to use all benefits responsibly. In the course of this project, we addressed the most important
issues in this field and proposed viable solutions. Moreover, the laboratory setup and scenario
need to be extended by adding more sensors and devices and approaching automation where
applicable. For example, more 3D printers could be added and enhanced by robot arms,
conveyor belts and racks in order to automatically process and distribute print orders and label

and pack up finished jobs.

Finally, we should take a look at end-user interaction. In case decision making is not (only) done
by the agent but (also) by the end-user, demand for appropriate information and interfaces
emerges. In the context of 3D printing, there could be a web interface for uploading models,
adjusting print settings, monitoring the print process (e.g. remaining time, video stream), manual
abortion, etc. Some of these features have been implemented already (e.g. video stream,
remote access to the 3D printer), but we need to add more automated processing, error

detection and merge functionalities into a single end point.

Finally, we would like to add some lessons learned notes, drawn from our experience in

loT4Industry project implementation:

e Focus should be always on the tools supporting near sensor networks to connect with

sensors and process observations.

39

Use loT community based connectors in the near sensor networks using popular tools,
such as Node-RED. The core system edge connectors likely cannot support a great
variety of devices.

Use loT tools rather than generic tools to avoid reinventing transformation, data
collection management (filtering, push, pull), and control aspects.

Use MQTT based Message Brokers to support virtual sensors in near sensor networks
as these are more suitable to the [oT; for example, operating conditions. Eventually,

MQTT based Message Brokers will be scaleable to include in the core sensor system.

40

References

[BUTLER D3.2] Integrated System Architecture and Initial Pervasive BUTLER Proof of Concept.
October 2013. Online available:
http://www.iot-butler.eu/wp-content/uploads/downloads/2013/10/D3.2-Integrated-System
-Architecture-v1.50.pdf

[CALAO1] G. Cachon, & M. Lariviere. 2001. Contracting to assure supply: How to share demand
forecasts in a supply chain. Management Science. Vol.47, 629-646.

[CALA99] G. Cachon, & M. Lariviere. 1999. Capacity choice and allocation: Strategic behavior
and supply chain performance. Management Science. Vol.45, 1091-1108

[FIVR96] Filar, J. and Vrieze, K., 1996. Competitive Markov decision processes.
Springer-Verlag.

[SECURE] SECURE: Semantics Empowered Rescue Environment (Demonstration Paper).

Online available: http://www.knoesis.org/library/resource.php?id=1631

41

http://www.iot-butler.eu/wp-content/uploads/downloads/2013/10/D3.2-Integrated-System-Architecture-v1.50.pdf
http://www.iot-butler.eu/wp-content/uploads/downloads/2013/10/D3.2-Integrated-System-Architecture-v1.50.pdf
http://www.knoesis.org/library/resource.php?id=1631

Appendix A: Overview of Agent Technologies for loT
The following are the best examples of agent frameworks supporting the Near Sensor

Networks.

JIAC (Java-based Intelligent Agent Componentware)
Website: http://www.jiac.de/agent-frameworks/jiac-v/

Architecture: http://repositories.dai-labor.de/sites/jiactng/5.1.5/

JIAC framework supports the design, implementation, and deployment of software agent
systems. In addition, it supports development of BDI agents. It can be used with a set of
development, configuration and monitoring tools, such as:
e VSDT tool, which is a BPMN editor, and multi-language transformation and workflow
simulator;
e Asguard, for controlling distributed multi-agent infrastructures at runtime;
e AWE (Agent World Editor) for modeling and configuring an MAS. It also generates files
for deploying the system;
e JIAC Toolipse, which is an integrated development environment containing all above

mentioned tools (for more: http://www.jiac.de/development-tools/jiac-toolipse/).

Active development of JIAC and publications (via TU Berlin) target industry scenarios (see:

http://www.jiac.de/publications/). Figure A.1.1 shows the JIAC architecture, which includes rule

engine, scheduling engine, workflow engine (BPMN), and message broker (ActiveMQ).

agentCoreAP| |

AT
Jadlpp agentCore _ | Gateway
(bdiAgent)

identity jlactngeca
{flacSecurity) {jlacSecurity)

ED
i i |
| | iR e ey] T T T T 1 T I] |
| I | 1 | | | | | i | | |
! L —— L L S L S (O — — | J I |
: Jadlinterpreter | | serviceMatcher | | bdiCentrol || ruleEngine || AgentUnit | | agentMigration parlayXClient webServer || userManagement jl !
(bdiAgent) (bdiAgent) {bdiAgent) (tools) vices) vices) vices) : vices) | :
i Gl e i st : !
| | I 1 identity-agent | { _ _ _ _ __ _ _| | PRI ey J
g | I L (liacSecurity)
| _| agentPersistence || ruleEngineMonitor L I Loadmeasurement | 4.
| 7| (basicServices) (tools) "‘ = 7| (basicServices)
|
1
I
1
|
I
|

|
I
I
I
|
| | P —
! | identity-ws
jadiDeplo; nt Il — = — ity
——————————————— rmmors ‘ | e
L ——
I
AgentScheduler |
- «{ P ;l “““““ G e e e {basicServices) ' i
|
I
I asgardviewer A e et e e e
___________ (tools)

Figure A.1.1: JIAC Architecture Components Overview

42

http://www.jiac.de/agent-frameworks/jiac-v/
http://repositories.dai-labor.de/sites/jiactng/5.1.5/
http://www.jiac.de/development-tools/jiac-toolipse/
http://www.jiac.de/publications/

Figure A.1..2 gives a view of the JIAC agent with regard to the behaviour control scheme.

Agent ruleg ---m---- !
t 1
i
* axegne mdnior
acHions comfiions
1
mainiain i !
gris 4 1
P *+ [octs =---———-
Jack A
1
- : £
maiiain I select = kb
i EOals ----mm s e oo o oo oo oo nilenibiOnS
goals . inrentions :
i |
1
v R
operalors B bt
¥ ¥
Services acls
-,
ORI LR T R
re-active BCCESS protocol
—_—
deliberative conirol
interactive interaction I Agent I

Figure A.1.2: JIAC Behaviour Control Scheme

micro JIAC
Website: http://www.jiac.de/agent-frameworks/microjiac/

Source: https://github.com/mcpat/microjiac-public

micro JIAC is a lightweight multi-agent architecture and framework for running JIAC agents on

various devices.

thingjs (thingjs-agent)
Website: https://qithub.com/thingjs/agent

Installation details: https://www.npmijs.com/package/thingjs-agent

Thing.js is an agent framework written in JavaScript for building loT applications. It supports

Node.js, Browsers (ES5+, Chrome, Safari, Firefox, Opera), Tessel 2, Phonegap/Cordova,

JavaScriptCore and other Mobile Containers. It is characterized by the following features:

Abstractions, Inheritance and Interfaces

Annotations and Templates

Passivity and Singletons

Simple, Series, Parallel, Queue, MapReduce and Waker Primitive Behaviours
HRRN Scheduling and Micro-containers

Asynchronous Messaging, Selectors and Filters

JSON-LD Ontologies and Message Translation

43

http://www.jiac.de/agent-frameworks/microjiac/
https://github.com/mcpat/microjiac-public
https://github.com/thingjs/agent
https://www.npmjs.com/package/thingjs-agent

e MAQTT Sensors, Actuators and Bridging

AKKA Agent
Website: http://doc.akka.io/docs/akka/snapshot/java/agents.html

AKKA agents are lightweight, reactive agents, used with AKKA actors (actor based system).

They come without any built-in rule, scheduling or workflow infrastructure; modeled after

Closure agents (for more: http://clojure.org/agents).

AKKA agents are bound to a single storage location for their lifetime, and only allow mutation of
that location (to a new state) to occur as a result of an action. Actions dispatched to an agent
from another thread will occur in the order they were sent, potentially interleaved with actions

dispatched to the same agent from other threads (see URL above for more details).

LogStash agents
Website: https://www.elastic.co/products/logstash

LogStash supports a number of inputs, codecs, filters and outputs:

e Inputs are sources of data; there exists plugins for custom data sources.

e Codecs transform an incoming message format into an internal LogStash representation
as well as into a specified output format. These are usually used if the incoming
message is not just a single line of text.

e Filters are processing actions on events and allow for modifying events or drop events
as they are processed.

e Outputs are destinations where events can be routed.

Furthermore, LogStash centralizes data processing of all types, normalizes varying schema and
formats, extends to custom log formats, provides easy creation of plugins for custom data
sources. Apache Kafka can be integrated with LogStash (see example:

https://github.com/joekiller/logstash-kafka).

Node-RED as Edge Agent Framework
Website: https://qithub.com/node-red/node-red

These agents are relevant for creating connectors between sensors and a core system that
collects observations. Using a graphical tool, connectors can filter and transform messages.
They can run according to a schedule (polling); route message stream from sensors to services,

etc.

Apache Camel
Website: http://camel.apache.org/

44

http://doc.akka.io/docs/akka/snapshot/java/agents.html
http://clojure.org/agents
https://www.elastic.co/products/logstash
https://github.com/joekiller/logstash-kafka
https://github.com/node-red/node-red
http://camel.apache.org/

EIP patterns http://camel.apache.org/enterprise-integration-patterns.html

This is relevant to build Edge Agents to transform or route messages (EIP patterns). It can be

connected to message brokers such as MQTT based brokers, or Kafka, ZeroMQ.

Appendix B: Overview of Rule Engines

The following are the best examples of relevant rule engines, which demonstrate that Near
Sensor Networks using Node.js can be supported with rule framework and coupled with larger
servers supporting Java based rule engines. In order to produce outcomes (objects, actions),
rules in rule engine’s knowledge base are applied either stateful or stateless. Stateless rules
create knowledge base either prior to processing rules or as part of the rule process. Rule might
be grouped as sets using the rule language, and conditionally executed. They can also be
grouped and associated with a session (stateless or stateful), such as “packaging the rules
across multiple files belonging to a package defined in the rule file or rule set’. The knowledge

base can be created via DB queries, user input, etc., and it also might be stateful or stateless.

Nools (Javascript, Node.js)

Website:https://www.npmjs.com/package/nools
Source: https://qgithub.com/C2FO/nools

This is relevant for Edge Agents, and useful for integration into Node-RED or Thingjs-Agent.

JBOSS Drools (Java)
Website: http://drools.org/

JBOSS Drools is a Business Rules Management System (BRMS) solution. It provides a core
Business Rules Engine (BRE), a web authoring and rules management application (Drools
Workbench) and an Eclipse IDE plugin for core development. It supports stateful and stateless
knowledge sessions, and can be associated with one or more rule packages. For example,
agents frameworks without an internal rule engine could use stateful sessions to maintain agent
state over time. Drools offers advanced rule based workflows, so-called KIS environment
(knowledge is everything) and knowledge sessions across JBOSS products, which can be

assigned to particular rule packages.

45

http://camel.apache.org/enterprise-integration-patterns.html
https://www.npmjs.com/package/nools
https://github.com/C2FO/nools
http://drools.org/

Appendix C: Overview of Data Computation Frameworks
Our motivation in researching currently existing data computation frameworks is to find the best

way to support analysis of real-time, near real-time and static data in IoT. Agents or other
processes will cause heavy system load when computing therefore, they should utilize a
computational server. An agent or process might need to enrich the content of sensor data or
create an abstraction of sensor data requiring computational resources.

In the following, we overview several frameworks, such as Apache Storm, Apache Spark,

Apache Spark Streaming, Apache Flink, and have a look at their integration features.

Apache Storm
Website: http://storm.apache.org/

It supports real-time distributed data computation of streaming data, by using Complex Event
Processing (CEP) server that is based on Apache Kafka. It also uses Predictive Model Markup
Language (PMML)®, which supports applications to describe and exchange models produced by
data mining and machine learning algorithms. It supports common models such as logistic

regression and feedforward neural networks.

Apache Spark
Website: http://spark.apache.org/

It is used for computation of static, non streaming processing, and to analyze data in database.

Apache Spark Streaming
Website: http://spark.apache.org/streaming/

Supporting real time distributed data computation of streaming data, in Java, Scala, Python, etc.

Apache Flink
Website: https://flink.apache.org/

This is a streaming dataflow engine for analysis of both static and streaming data. There exist
several APlIs for creating applications on top of the Apache Flink engine:
e DataSet API for static data embedded in Java, Scala, and Python,

e DataStream API for unbounded streams embedded in Java and Scala, and

e Table API with a SQL-like expression language embedded in Java and Scala.

® PMML https://en.wikipedia.org/wiki/Predictive Model Markup_Language

46

http://storm.apache.org/
http://spark.apache.org/
http://spark.apache.org/streaming/
https://flink.apache.org/
https://flink.apache.org/features.html#dataset-api
https://flink.apache.org/features.html#datastream-api
https://flink.apache.org/features.html#table-api
https://en.wikipedia.org/wiki/Predictive_Model_Markup_Language

Apache Flink can be integrated with other open source systems for data input and output, as
well as deployment. Figure C.3.1. shows Apache Flink overview architecture, and Figure C.3.2.

illustrates the integration aspects of Apache Flink and other community tools.

Bl §
g R
32 | < ! % E’
A
E i & g & E &
-
o DataSet API DataStream API
g Batch Processing Stream Processing
5 Runtime
Distributed Streaming Dafaflow

= Local Cluster Cloud
- Single JVM, Standalons, GCE,
a Embedded YARN EC2

Figure C.3.1: Apache Flink Architecture Overview

Programming APls

G
= BScala
Streaming

Optimization Data Processing
XL E
Data Access Deployment
@[}.’mﬁg‘ Azure Storage PlanA PlanB [Z]- ‘
‘& TACHYON Amazon S3 = Direct
XTREEM ?’lfl@!{&,q - NRFCSH . “ Distr. Runtime Memory “ @ Hadoop YARN
” HBRSE e Management
Google Cloud Storage 19"y] 7ez&y Apache Tez
VAT Managed SR
{-‘@L §8 kafka Ve JVM Hear @ Cloud

Figure C.3.2: Apache Flink API, Data Access & Deployment integration with community

products

47

https://flink.apache.org/features.html#deployment-and-integration
https://flink.apache.org/features.html#deployment-and-integration

Apache Kafka and Apache Spark Integration Aspects
Some integration aspects of Apache Kafka and Apache Spark can be retrieved from the

following links:
e Apache Kafka, Apache (Twitter) Storm & Elastic Search
o https://www.youtube.com/watch?v=LpNbjXFPyZ0

e Apache Storm and Kafka

o http://lwww.zdatainc.com/2014/07/real-time-streaming-apache-storm-apache-kafk

al

o http://de.slideshare.net/gschmutz/kafka-andstromeventprocessinginrealtime

Appendix D: Overview of Message Bus Technology

The following overview is necessary to answer the question on how to handle high throughput of
IoT messages. We explore: MQTT, Apache Kafka, Apache Flume, zeroMQ, etc.

MQTT

Website: http://mqtt.org/
MQTT is Machine-to-Machine (M2M)/ "Internet of Things" connectivity protocol. It is OASIS

standard (see http://mqtt.org/), “designed as an extremely lightweight publish/subscribe

messaging transport. It is useful for connections with remote locations where a small code
footprint is required and/or network bandwidth is at a premium. For example, it has been used in
sensors communicating to a broker via satellite link, over occasional dial-up connections with
healthcare providers, and in a range of home automation and small device scenarios. It is also
ideal for mobile applications because of its small size, low power usage, minimised data
packets, and efficient distribution of information to one or many receivers.”

MQTT brokers are listed below:

e Mosquitto: http://mosquitto.org/ (Python broker and client library)

e Mosca: http://mcollina.github.io/mosca (Node.js MQTT broker)

Apache Kafka

Website:http://kafka.apache.org

Apache Kafka provides Java and multi language connectors/bridges, high performance
message queue (publish subscribe) over PUBSUB protocol, etc. For more details, see:

e http://www.infoq.com/articles/apache-kafka

48

https://www.youtube.com/watch?v=LpNbjXFPyZ0
http://www.zdatainc.com/2014/07/real-time-streaming-apache-storm-apache-kafka/
http://www.zdatainc.com/2014/07/real-time-streaming-apache-storm-apache-kafka/
http://de.slideshare.net/gschmutz/kafka-andstromeventprocessinginrealtime
http://mqtt.org/
http://mqtt.org/
http://mosquitto.org/
http://mcollina.github.io/mosca
http://kafka.apache.org/
http://www.infoq.com/articles/apache-kafka

e https://enqgineering.linkedin.com/27/project-kafka-distributed-publish-subscribe-messagin

g-system-reaches-v06

Apache Flume

Website: http://flume.apache.org/

Flume is a distributed service for collecting, aggregating, and moving large amounts of log data.

It has a simple and flexible architecture based on streaming data flows:

e Apache Flume Sink and Source for Apache Kafka (consumer, producer) (see Figure
D.4.1):

e A new channel that uses Kafka
e Hive Sink based on the new Hive Streaming support (HDFS)
e End-to-end authentication in Flume

e Simple regex search-and-replace interceptor

G
h
Serve (Channel C)

Agent -

Figure D.4.1: Apache Flume Architecture Overview

zeroMQ / OMQ
Website: http://zeromq.org/

zeroMQ is a high-speed asynchronous I/0 engine, backed by a large and active open source
community. It supports every modern language and platform, and carries messages across

inproc, IPC, TCP, TIPC, multicast, using smart patterns like pub-sub, push-pull, and
router-dealer.

Schedulers

Schedulers might already be included to support particular components e.g. Agent framework,
lIoT device Connectors such as Node-RED, or Thing-agent.js (Node.js), JIAC Agent framework
and JBOSS Drools (Quartz based).

49

https://engineering.linkedin.com/27/project-kafka-distributed-publish-subscribe-messaging-system-reaches-v06
https://engineering.linkedin.com/27/project-kafka-distributed-publish-subscribe-messaging-system-reaches-v06
http://flume.apache.org/

Appendix E: Overview of Semantic Technologies for IoT

Sensor Ontologies

Modeling of sensor configuration information requires sensor description and deployment
aspects, which is based on standard ontologies such as SSN (Semantic Sensor Network) or
SensorML ontology. Registering the sensor can require more than the base SSN ontology.
Units and measures, tasks, etc. may have their own ontologies. Some examples of sensor
configuration are provided by projects such as GSN, X-GSN, M3 (see Table E.1. for more
details). Some additional goals of these projects are to support decision making, evaluate the
capabilities of sensors (e.g. measurement range/limits, control topics possible), and provide

sensor location(s).

Table E.1.: Overview of relevant projects on sensor configuration: GSN, X-GSN, M3

Project About Details
GSN SSN and other Provides configuration scheme for sensor
ontologies and configuration based on SSN and supporting ontologies
vocabularies and vocabularies (part of M3)
X-GSN In OpenloT project Part of GSN for OpenloT project
(GitHub)
M3 Ontology and software | Describe SSN, LOV4IOT (Linked Open Vocabularies
extending SSN for Internet of Things), domain ontologies but
configuration files cannot be found

A set of sensor related ontologies describing sensors, sensor based observations, sensor
deployment, control, maintenance, responsibility, etc. is given below:
e Sensor related ontologies: http://www.sensormeasurement.appspot.com/?p=ontologies
e Semantic Sensor Network (SSN) (W3C):

o http://www.w3.0rg/2005/Incubator/ssn/ssnx/ssn
o http://www.sciencedirect.com/science/article/pii/S157082681200057 1
e M3 sensor ontology and software (including LOV4IOT:

o http://[sensormeasurement.appspot.com/

o source: https://github.com/gyrard/M3Framework/tree/master/war/SPARQL

50

http://www.sensormeasurement.appspot.com/?p=ontologies
http://www.w3.org/2005/Incubator/ssn/ssnx/ssn
http://www.sciencedirect.com/science/article/pii/S1570826812000571
http://sensormeasurement.appspot.com/

In addition, sensor systems can be associated to locations in the sensor description to support
VSD sensor planning services. Modeling of location semantics can be done by using SSN
ontology, as shown in the FP7 Butler project [BUTLER D3.2]. In BUTLER, in order to provide
semantic and spatio-temporal reasoning, the following aspects are considered:

e Describing the spatial characteristics of different locations in sensor environment;

e Using the W3C SSN ontology to further describe the sensors and their position;

e Translating positions in coordinates into semantic locations (e.g. Bedroom);

e Semantically linking locations with activities (e.g. Sleeping in a Bedroom).

This background information can be modeled with ontologies as shown in the next Figure C.1.:

ex:Room a owl:(Class;
rdfs:subClass0f geo:Feature
ex:LivingRoom a ex:Room;
rdfs:label "Living Room”;
geo: hasGeometry ex:GeolivingRoom
ex :Geol ivingRoom a sf:Polygon ;
geo:asWkT "POLYGON ((299 ooe, 5B 608, 588 768, 984
7aea, S8 268, 298 268, 298
688))"**sf wktLiteral .
ex:activity a owl:DatatypeProperty;
rdfs:domaln ex:Room;
rdfs:range xsd:string
ey :LivingRoom ex:activity "Watch TV"
ex:LivingRoom ex:activity "Play Game"
ex:MasterBedroom ex:activity "Sleep”

Figure C.1.: Semantic modelling of context and location information

SensorML (Sensor Model Language)
SensorML (see http://www.sensorml.com/index.html) is a standard created under OGC’s Sensor
Web Enablement (SWE) activity (OGC 07-000), with the aim to enable interoperability between

sensors and actuators as well as computational processes, so that they can be better
understood by machines, and more efficiently used in complex workflows.
SensorML and SSN are used for modeling virtual sensors and their properties (e.g. sensor
location), as shown in the following VSD (Virtual Sensor Description) examples:
e VSD based on GSN (Global Sensor Network) project:
o examples: https://github.com/LSIR/gsn/blob/master/virtual-sensors/samples
e VSD based on X-GSN in OpenloT project:

51

http://www.sensorml.com/index.html

o examples: https://github.com/OpenlotOrg/openiot/wiki/X-GSN-Use
e VSD based on SensorML 2.0:
o provides general sensor information in support of data discovery;
o supports the processing and analysis of the sensor measurements;
o provides the geolocation of the measured data;
o provides performance characteristics (e.g. accuracy, threshold, etc.);
o archives fundamental properties and assumptions regarding sensor;
o describes sensor tasks corresponding to control topics or threat levels (requires
control topic or threat level terminology);

o examples: http://www.sensorml.com/sensorML-2.0/examples/index.html

Here are some links to SensorML based ontologies:
e Ontology of general sensor terms:
http://sensorml.com/orr/#http://sensorml.com/ont/swe/property

e Community Sensor Model (CSM) ontology:
http://sensorml.com/orr/#http://sensorml.com/ont/csm/property

Appendix F: Overview of Security Technologies for loT

loT4Industry explores questions such as: Which sensors can address particular threats? Where
are these sensors deployed? What tasks can the sensor(s) perform at a particular location?
What are the maintenance issues and who is responsible? What are data properties and
measurement units?
Threats modelling in a form of terminologies and ontologies mapp threats e.g. those found in
log files, with topics and/or sensors. For example, a threat level (high, medium, low, normal)
could be assigned to particular camera settings and retrieved depending on the DSS (Decision
Support System) outcome. Some applications might report warnings or errors that need to be
resolved by an edge agent.
Here is a list of related tools and projects in security for loT:

e SIEM (Security Information & Event Management) systems collect, normalize, sort,

aggregate, correlate and report all security-related events, independently of the product

brand or license giving rise to such events. SIEM systems provide alerts, analysis and

52

https://github.com/OpenIotOrg/openiot/wiki/X-GSN-Use
http://www.sensorml.com/sensorML-2.0/examples/index.html
http://sensorml.com/orr/#http://sensorml.com/ont/swe/property
http://sensorml.com/orr/#http://sensorml.com/ont/csm/property

archiving of messages and can be integrated with existing logging systems such as
system logs, syslog, flat files, etc.

e Alien Vault (website: https://www.alienvault.com/). Alien Vault Open Threat Exchange

(OTX™) is an open threat information sharing and analysis network.
e FP7 Secure project. This project creates rescue robots (agents) that abstract the sensor
data and determine if there is a threat. The agents are using OwlAPI and OwIDB from

SourceForge, as well as SSN and common.owl ontologies. No software found so far.

The following resources might support security/ threat terminologies:
e ENISA and its Incident Taxonomy:

http://www.enisa.europa.eu/activities/cert/support/incident-management/browsable/incid

ent-handling-process/incident-taxonomy/existing-taxonomies

e Shostack and Microsoft Threat modeling tool

ENISA Threat Terminology

The European Union Agency for Network and Information Security (ENISA) provides thematic
based threat landscapes™ that might be useful for creating an loT security threat taxonomy.
ENISA’s threat terminology supports DSS and communication within system and with humans,
as well as logging, e.g. report coded about threats OUTAGE or FIRE. Unlike the Shostack’s
threat modeling tool, no mitigation approaches are detailed. However, one can see the
relevance regarding the high level threat categories and details organized according to the
source cause of the threat: Physical attacks, Disasters, Outages, Failures and malfunctions,
Unintentional damages (accidental), Nefarious activity/ Abuse, Damage/ Loss (IT assets),

Eavesdropping/ Interceptions/ Hijacking, Legal.

Shostack and Microsoft Threat Modeling Tool

The Shostack and Microsoft Threat modeling tool' supports system and security design and
advises threat mitigation approaches. According to Shostack, threat modeling is a means to
discover security design flaws and support the overall software and systems design process.
Threat modelling helps to understand possible threat mitigation approaches. For example, the

Software Development Lifecycle (SDL) Threat Modeling Tool' from Microsoft is based on

"Yhitps://www.enisa.europa.eu/activities/risk-management/evolving-threat-environment/enisa-thematic-landscapes
" http://blogs.microsoft.com/cybertrust/2014/04/15/introducing-microsoft-threat-modeling-tool-2014/
2. https://msdn.microsoft.com/en-us/magazine/dd347831.aspx

53

https://www.alienvault.com/
http://www.enisa.europa.eu/activities/cert/support/incident-management/browsable/incident-handling-process/incident-taxonomy/existing-taxonomies
http://www.enisa.europa.eu/activities/cert/support/incident-management/browsable/incident-handling-process/incident-taxonomy/existing-taxonomies
http://blogs.microsoft.com/cybertrust/2014/04/15/introducing-microsoft-threat-modeling-tool-2014/
http://blogs.microsoft.com/cybertrust/2014/04/15/introducing-microsoft-threat-modeling-tool-2014/
https://msdn.microsoft.com/en-us/magazine/dd347831.aspx

Shostack’s book, which is about threat modeling Designing for Security. The SDL tool enables

developers or system architects to achieve the following:

e Communicate about the security design of their systems,

e Analyze those designs for potential security issues using a proven methodology,

e Suggest and manage mitigations for security issues.

Shostack provides a categorization of threats, which is called STRIDE (Spoofing, Tampering,

Repudiation, Information disclosure, Denial of service, and Elevation of privilege) (Table F.2.1.)

Table F.2.1: STRIDE Threats Categories™

authorization

Property Threat Definition Example

Authentication Spoofing Impersonating Pretending to be any of billg,
something or microsoft.com or ntdil.dll
someone else.

Integrity Tampering Modifying data or | Modifying a DLL on disk or DVD,
code or a packet as it traverses the

LAN.

Non-repudiation Repudiation Claiming to have | “l didn’t send that email,” “I didn’t
not performed an | modify that file,” “I certainly didn’t
action. visit that web site, dear!”

Confidentiality Information Exposing Allowing someone to read the

Disclosure information to Windows source code; publishing
someone not a list of customers to a web site.
authorized to see
it

Availability Denial of Deny or degrade | Crashing Windows or a web site,

Service service to users sending a packet and absorbing

seconds of CPU time, or routing
packets into a black hole.

Authorization Elevation of Gain capabilities | Allowing a remote internet user to

Privilege without proper run commands is the classic

example, but going from a limited
user to admin is also EoP.

SECURE (Semantics Empowered Rescue Environment)
SECURE rescue robots constitute an agent based system that generates abstractions for event

detection in emergency scenarios. They are equipped with a variety of sensors gathering

3 http://blogs.microsoft.com/cybertrust/2007/09/1 1/stride-chart/

54

http://blogs.microsoft.com/cybertrust/2014/04/15/introducing-microsoft-threat-modeling-tool-2014/
http://blogs.microsoft.com/cybertrust/2007/09/11/stride-chart/

sensory observations. The authors in [SECURE] discuss Semantic Web enabled system for
collecting and processing sensor data within a rescue environment. The real-time system
collects heterogeneous raw sensor data from rescue robots through a wireless sensor network.
The raw sensor data is converted to RDF using SSN ontology and further processed to
generate abstractions for event detection in emergency scenarios. An abstraction is a
representation of an environment derived from sensor observation data. Generating an
abstraction requires inferring explanations from an incomplete set of observations and updating
these explanations on the basis of new information. Figure F.3.1. shows the hazards and the
types of fire threats which are possible in each location (room), plus sensor status and whether

a human is detected in the room or not.

Semantics Empowered resClUe enviRonmEnt (SECURE)

a

S | §

= Aeom 7
. | ¥ Chemicals in Processing
Solid Form Plant
ey 20022

() o

o @I a = Room 4
. O Chemicals in 4 Chemicals in
Gaseous Form > Liguid Form

25 i .

o - & = =

K

Room 1

nl I iﬁ‘ice o ong] | Panty

Rest Area

L £

Inventary :l'{'ﬂ'ﬁ
1- Hurman Presence Information 7 |
L ; 7
Fire Detector Building @: Q . y
=

[- Damaged Fire Datector Plan

iy - Active Fire

it
3

Knowledge from
curated sgurces Fire Fighters
are batter prepared

i

Figure F.3.1: SECURE: location (room) and threats, sensor status, human presence

55

